Página 1 de 1

[Dúvida]Integral

MensagemEnviado: Sex Jun 15, 2012 21:17
por Jhonata
Bem, estou com dificuldade nessa questão:
Calcule a Integral: \int_{} \frac{dx}{x^2+2x+5}. Eu tentei resolver com alguns metódos que já conheço, mas nenhuma está igual ao gabarito (que é: \frac{1}{2}arctg\left(\frac{x+1}{2} \right)+c).

Eu fui pedir ajuda ao meu professor, mas ele disse que é muito fácil e não iria resolver, então apenas me sugeriu que eu "completasse" os quadrados do denominador e depois aplicasse uma substituição simples para resolvê-la. Até aí tudo bem, mas eu não sei como "completar quadrados". Existe algum algoritmo, macete, ou qualquer coisa do gênero pra lidar com isso? Se alguém puder me ajudar, desde já, grato.

Re: [Dúvida]Integral

MensagemEnviado: Sex Jun 15, 2012 21:37
por DanielFerreira
Jhonata,
boa noite!
Fiz pela dica dada, mas acho que não sai pela substituição simples e sim substituição trigonométrica.

Re: [Dúvida]Integral

MensagemEnviado: Sex Jun 15, 2012 22:15
por DanielFerreira
Tenho dificuldades em decorar fórmulas, por isso...
x^2 + 2x + 5 ==> x^2 + 2x + 1 + 4 ==> (x + 1)^2 + 4

Considere x + 1 = \gamma, com isso d\gamma = dx:

\int_{}^{}\frac{dx}{x^2 + 2x + 5} = \int_{}^{}\frac{dx}{(x + 1)^2 + 4} = \int_{}^{}\frac{d\gamma}{\gamma^2 + 4}

Desenhe um triângulo reto em B, faça:
BÃC = \theta

AB = 2

BC = \gamma, então:

AC = \sqrt[]{\gamma^2 + 4}

Calculando a tangente:
tg \theta = \frac{\gamma}{2} ==> \theta = arctg \frac{\gamma}{2}

\gamma = 2 tg\theta

Derivando \gamma...
d\gamma = \frac{2 d\theta}{cos^2\theta}

Fazendo a substituição:
\gamma^2 + 4 ==> 4tg^2\theta + 4 ==> \frac{4}{cos^2\theta}

Agora podemos continuar a integral:
\int_{}^{}\frac{d\gamma}{\gamma^2 + 4} =

\int_{}^{}\frac{\frac{2d\theta}{cos^2\theta}}{\frac{4}{cos^2\theta}} =

\int_{}^{}\frac{2d\theta}{4} =

\left[\frac{\theta}{2} \right] =

\left[\frac{arctg\left(\frac{\gamma}{2} \right)}{2} \right]

\frac{1}{2} . arctg\left(\frac{x + 1}{2} \right) + c

Espero ter ajudado!!

Re: [Dúvida]Integral

MensagemEnviado: Sex Jun 15, 2012 22:23
por Jhonata
danjr5 escreveu:Jhonata,
boa noite!
Fiz pela dica dada, mas acho que não sai pela substituição simples e sim substituição trigonométrica.


Boa noite danjr.
Você solucionou meu problema com a Integral. Mas como eu faço pra completar os quadrados? No caso, se eu encontrar outro problema do tipo, eu não saberia como fazer.
E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx

Re: [Dúvida]Integral

MensagemEnviado: Sex Jun 15, 2012 23:35
por DanielFerreira
Boa noite!
Jhonata escreveu:Boa noite danjr.
(...) E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx

Não consegui visualizar! Poderia mostrar os cálculos??

Re: [Dúvida]Integral

MensagemEnviado: Sáb Jun 16, 2012 02:01
por Jhonata
danjr5 escreveu:Boa noite!
Jhonata escreveu:Boa noite danjr.
(...) E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx

Não consegui visualizar! Poderia mostrar os cálculos??


Certamente.
Se substituirmos u=x+1 com du=dx, temos:
\int_{}^{}\frac{du}{\left(u \right^2+2^2)}=\frac{1}{2}arctg\left(\frac{u}{2} \right)+c=\frac{1}{2}arctg\left(\frac{x+1}{2} \right)+c
Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados.

Obrigado pela atenção.

Re: [Dúvida]Integral

MensagemEnviado: Sáb Jun 16, 2012 12:09
por e8group
Jhonata escreveu:Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados


Bom dia Jhonata ,ainda não aprendi a integrar .Mas em relação a completar quadrados ,note que o mesmo é obtido por uma manipulação algebrica .por exemplo : seja f definida por f(x) de tal modo que f(x)= ax^2+bx +c  ;(   a,b , c ) \neq 0 .

Note se quisermos encontrar o valor de x para o qual f(x) equivale a zero ,temos :


ax^2+bx +c = 0 . Fazendo uma manipulação algebrica ,obtemos que ( ax)^2+abx + \frac{b^2}{4}  = \frac{b^2}{4} -ca .Observe que somamos e multiplicamos ambos membros da igualdade por ( \frac{b^2}{4} ; a) .

assim ,

4(ax+ \frac{b}{2})^2 = b^2 -4ac .

Como exercício para você praticar ,mostre quex_1 = \frac{-b -\sqrt (b^2 -4ac )}{2a} e x_2 =  \frac{-b +\sqrt (b^2 -4ac )}{2a} . sendo a,b e c \neq 0 .

OBS.: Neste link(http://www.youtube.com/watch?v=n_M5upL0U1Y) há uma video aula a respeito deste assunto .

Espero ter ajudado .

abraços .

Re: [Dúvida]Integral

MensagemEnviado: Sáb Jun 16, 2012 12:53
por Jhonata
santhiago escreveu:
Jhonata escreveu:Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados


Bom dia Jhonata ,ainda não aprendi a integrar .Mas em relação a completar quadrados ,note que o mesmo é obtido por uma manipulação algebrica .por exemplo : seja f definida por f(x) de tal modo que f(x)= ax^2+bx +c  ;(   a,b , c ) \neq 0 .

Note se quisermos encontrar o valor de x para o qual f(x) equivale a zero ,temos :


ax^2+bx +c = 0 . Fazendo uma manipulação algebrica ,obtemos que ( ax)^2+abx + \frac{b^2}{4}  = \frac{b^2}{4} -ca .Observe que somamos e multiplicamos ambos membros da igualdade por ( \frac{b^2}{4} ; a) .

assim ,

4(ax+ \frac{b}{2})^2 = b^2 -4ac .

Como exercício para você praticar ,mostre quex_1 = \frac{-b -\sqrt (b^2 -4ac )}{2a} e x_2 =  \frac{-b +\sqrt (b^2 -4ac )}{2a} . sendo a,b e c \neq 0 .

OBS.: Neste link(http://www.youtube.com/watch?v=n_M5upL0U1Y) há uma video aula a respeito deste assunto .

Espero ter ajudado .

abraços .


Muito obrigado Santhiago. Foi esclarecedor e como eu já havia previsto, não há um algoritmo menos complexo, mas o que você fez deu pra entender muito bem. Parece que pra lidar com isso mesmo, terei de perder um tempo exercitando tal. Vou dar uma olhada no vídeo e muito obrigado pela sua grande ajuda e atenção.
Abraços.

Re: [Dúvida]Integral

MensagemEnviado: Seg Jul 03, 2017 13:10
por cferreira264
Usando a técnica de completar quadrados, como ficaria a equação t^2+\frac{3}{2}t-2=0 ?