• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida]Integral

[Dúvida]Integral

Mensagempor Jhonata » Sex Jun 15, 2012 21:17

Bem, estou com dificuldade nessa questão:
Calcule a Integral: \int_{} \frac{dx}{x^2+2x+5}. Eu tentei resolver com alguns metódos que já conheço, mas nenhuma está igual ao gabarito (que é: \frac{1}{2}arctg\left(\frac{x+1}{2} \right)+c).

Eu fui pedir ajuda ao meu professor, mas ele disse que é muito fácil e não iria resolver, então apenas me sugeriu que eu "completasse" os quadrados do denominador e depois aplicasse uma substituição simples para resolvê-la. Até aí tudo bem, mas eu não sei como "completar quadrados". Existe algum algoritmo, macete, ou qualquer coisa do gênero pra lidar com isso? Se alguém puder me ajudar, desde já, grato.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor DanielFerreira » Sex Jun 15, 2012 21:37

Jhonata,
boa noite!
Fiz pela dica dada, mas acho que não sai pela substituição simples e sim substituição trigonométrica.
Editado pela última vez por DanielFerreira em Sex Jun 15, 2012 22:16, em um total de 1 vez.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor DanielFerreira » Sex Jun 15, 2012 22:15

Tenho dificuldades em decorar fórmulas, por isso...
x^2 + 2x + 5 ==> x^2 + 2x + 1 + 4 ==> (x + 1)^2 + 4

Considere x + 1 = \gamma, com isso d\gamma = dx:

\int_{}^{}\frac{dx}{x^2 + 2x + 5} = \int_{}^{}\frac{dx}{(x + 1)^2 + 4} = \int_{}^{}\frac{d\gamma}{\gamma^2 + 4}

Desenhe um triângulo reto em B, faça:
BÃC = \theta

AB = 2

BC = \gamma, então:

AC = \sqrt[]{\gamma^2 + 4}

Calculando a tangente:
tg \theta = \frac{\gamma}{2} ==> \theta = arctg \frac{\gamma}{2}

\gamma = 2 tg\theta

Derivando \gamma...
d\gamma = \frac{2 d\theta}{cos^2\theta}

Fazendo a substituição:
\gamma^2 + 4 ==> 4tg^2\theta + 4 ==> \frac{4}{cos^2\theta}

Agora podemos continuar a integral:
\int_{}^{}\frac{d\gamma}{\gamma^2 + 4} =

\int_{}^{}\frac{\frac{2d\theta}{cos^2\theta}}{\frac{4}{cos^2\theta}} =

\int_{}^{}\frac{2d\theta}{4} =

\left[\frac{\theta}{2} \right] =

\left[\frac{arctg\left(\frac{\gamma}{2} \right)}{2} \right]

\frac{1}{2} . arctg\left(\frac{x + 1}{2} \right) + c

Espero ter ajudado!!
Editado pela última vez por DanielFerreira em Sex Jun 15, 2012 23:30, em um total de 1 vez.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor Jhonata » Sex Jun 15, 2012 22:23

danjr5 escreveu:Jhonata,
boa noite!
Fiz pela dica dada, mas acho que não sai pela substituição simples e sim substituição trigonométrica.


Boa noite danjr.
Você solucionou meu problema com a Integral. Mas como eu faço pra completar os quadrados? No caso, se eu encontrar outro problema do tipo, eu não saberia como fazer.
E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor DanielFerreira » Sex Jun 15, 2012 23:35

Boa noite!
Jhonata escreveu:Boa noite danjr.
(...) E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx

Não consegui visualizar! Poderia mostrar os cálculos??
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor Jhonata » Sáb Jun 16, 2012 02:01

danjr5 escreveu:Boa noite!
Jhonata escreveu:Boa noite danjr.
(...) E olhando seu desenvolvimento, quando você completou os quadrados, eu entendi porque dá pra fazer com uma substituição simples, ao invés de fazer por substituição trigonométrica;
bastava fazer u=x+1 e du=dx

Não consegui visualizar! Poderia mostrar os cálculos??


Certamente.
Se substituirmos u=x+1 com du=dx, temos:
\int_{}^{}\frac{du}{\left(u \right^2+2^2)}=\frac{1}{2}arctg\left(\frac{u}{2} \right)+c=\frac{1}{2}arctg\left(\frac{x+1}{2} \right)+c
Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados.

Obrigado pela atenção.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor e8group » Sáb Jun 16, 2012 12:09

Jhonata escreveu:Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados


Bom dia Jhonata ,ainda não aprendi a integrar .Mas em relação a completar quadrados ,note que o mesmo é obtido por uma manipulação algebrica .por exemplo : seja f definida por f(x) de tal modo que f(x)= ax^2+bx +c  ;(   a,b , c ) \neq 0 .

Note se quisermos encontrar o valor de x para o qual f(x) equivale a zero ,temos :


ax^2+bx +c = 0 . Fazendo uma manipulação algebrica ,obtemos que ( ax)^2+abx + \frac{b^2}{4}  = \frac{b^2}{4} -ca .Observe que somamos e multiplicamos ambos membros da igualdade por ( \frac{b^2}{4} ; a) .

assim ,

4(ax+ \frac{b}{2})^2 = b^2 -4ac .

Como exercício para você praticar ,mostre quex_1 = \frac{-b -\sqrt (b^2 -4ac )}{2a} e x_2 =  \frac{-b +\sqrt (b^2 -4ac )}{2a} . sendo a,b e c \neq 0 .

OBS.: Neste link(http://www.youtube.com/watch?v=n_M5upL0U1Y) há uma video aula a respeito deste assunto .

Espero ter ajudado .

abraços .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor Jhonata » Sáb Jun 16, 2012 12:53

santhiago escreveu:
Jhonata escreveu:Achei bem mais fácil do que fazer por substituição trigonométrica.
Mas minha dúvida principal na questão é como completar quadrados


Bom dia Jhonata ,ainda não aprendi a integrar .Mas em relação a completar quadrados ,note que o mesmo é obtido por uma manipulação algebrica .por exemplo : seja f definida por f(x) de tal modo que f(x)= ax^2+bx +c  ;(   a,b , c ) \neq 0 .

Note se quisermos encontrar o valor de x para o qual f(x) equivale a zero ,temos :


ax^2+bx +c = 0 . Fazendo uma manipulação algebrica ,obtemos que ( ax)^2+abx + \frac{b^2}{4}  = \frac{b^2}{4} -ca .Observe que somamos e multiplicamos ambos membros da igualdade por ( \frac{b^2}{4} ; a) .

assim ,

4(ax+ \frac{b}{2})^2 = b^2 -4ac .

Como exercício para você praticar ,mostre quex_1 = \frac{-b -\sqrt (b^2 -4ac )}{2a} e x_2 =  \frac{-b +\sqrt (b^2 -4ac )}{2a} . sendo a,b e c \neq 0 .

OBS.: Neste link(http://www.youtube.com/watch?v=n_M5upL0U1Y) há uma video aula a respeito deste assunto .

Espero ter ajudado .

abraços .


Muito obrigado Santhiago. Foi esclarecedor e como eu já havia previsto, não há um algoritmo menos complexo, mas o que você fez deu pra entender muito bem. Parece que pra lidar com isso mesmo, terei de perder um tempo exercitando tal. Vou dar uma olhada no vídeo e muito obrigado pela sua grande ajuda e atenção.
Abraços.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Integral

Mensagempor cferreira264 » Seg Jul 03, 2017 13:10

Usando a técnica de completar quadrados, como ficaria a equação t^2+\frac{3}{2}t-2=0 ?
cferreira264
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Jul 02, 2017 13:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D


cron