• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites laterais] Questão

[Limites laterais] Questão

Mensagempor Leti Moura » Qui Jun 14, 2012 00:52

lim_{x\to\ 4 esquerda} \left\frac{3-x}{x^2-2x-8}

Eu tentei fazer invertendo a fração, tentei também com x em evidência, mas deu indeterminação.
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Qui Jun 14, 2012 01:40

Para começar a forma correta seria:

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}

Da pra notar que a fatoração não irá ajudar nesse caso.

Pois temos no numerador 3-x ou -(x-3)

E no numerador: (x-4)(x+2)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Qui Jun 14, 2012 01:42

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}

Passando o limite diretamente temos:

\lim_{x\rightarrow4^-}\frac{3-x}{x^2-2x-8}\Leftrightarrow \frac{-1}{4^2-2x-8}= \frac{-1}{0^+}= +\infty
Editado pela última vez por Claudin em Sex Jun 15, 2012 02:42, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Qui Jun 14, 2012 21:39

Você tem razão. Eu fiz assim, mas esqueci que n/o = infinito! Mas, por que + infinito?
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor Claudin » Sex Jun 15, 2012 02:45

Basta analisar que: dividir um número (uma constante no caso o -1) por um número que se aproxima de 0^+, ou seja, aproximando pela direita teríamos como resposta o mais infinito. Analogamente notamos que a divisão de uma constante por um número que se aproxima de 0^-, ou seja, aproximando pela esquerda teríamos como resposta o menos infinito.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:07

Boa noite,

Claudin escreveu:Basta analisar que: dividir um número (uma constante no caso o -1) por um número que se aproxima de 0^+, ou seja, aproximando pela direita teríamos como resposta o mais infinito. Analogamente notamos que a divisão de uma constante por um número que se aproxima de 0^-, ou seja, aproximando pela esquerda teríamos como resposta o menos infinito.


Não há uma contradição matemática aí: numerador negativo e denominador positivo e quociente positivo?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 20:11

huum.. eu acho que é mais inifinito, porque ficaria -1/0-, não?
obs: c/0- = +infinito, se c>0 ou - infinito, se c<0

por que 0+ se tá se aproximando pela esquerda?
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:21

Sim, esse limite para x \rightarrow 4^{-} tende a + \infty. Seu raciocínio está ok.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 20:40

Lendo melhor a sua anotação, corrijo:

Leti Moura escreveu:huum.. eu acho que é mais inifinito, porque ficaria -1/0-, não?

Sim (supondo a sua notação 0- como sendo um número negativo bem próximo de 0).


Leti Moura escreveu:obs: c/0- = +infinito, se c>0 ou - infinito, se c<0

Supondo a sua notação 0- como sendo um número negativo bem próximo de 0.
Então se c>0, c/0- = -infinito e se c<0, c/0- = +infinito.


Leti Moura escreveu:por que 0+ se tá se aproximando pela esquerda?

0+ significa aproximação a zero pela direita, pelo lado positivo nesse caso.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 21:12

então a resposta dessa questão seria mesmo +infinito, porque ficaria -1/0-!
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Limites laterais] Questão

Mensagempor fraol » Sáb Jun 16, 2012 21:29

Leti Moura escreveu:então a resposta dessa questão seria mesmo +infinito, porque ficaria -1/0-!


Sim.

(editado pouco depois)
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites laterais] Questão

Mensagempor Leti Moura » Sáb Jun 16, 2012 21:36

obrigada! treinar bastante pra manter na cabeça!
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}