• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] Propriedades ou definição formal?

[limites] Propriedades ou definição formal?

Mensagempor jvabatista » Qua Jun 06, 2012 11:43

Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.

Seja f uma função definioda em R e \lim_{x\rightarrow0}\frac{f(x)}{x} = 1 . Mostre que:

a) \lim_{x\rightarrow0}\frac{f(3x)}{x} = 3

b) \lim_{x\rightarrow0}\frac{f({x}^{2})}{x} = 0.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor hygorvv » Qua Jun 06, 2012 15:58

jvabatista escreveu:Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.

Seja f uma função definioda em R e \lim_{x\rightarrow0}\frac{f(x)}{x} = 1 . Mostre que:

a) \lim_{x\rightarrow0}\frac{f(3x)}{x} = 3

b) \lim_{x\rightarrow0}\frac{f({x}^{2})}{x} = 0.


a)Sendo 3x=k, temos:
lim_{x \to 0} \frac{f(3x)}{x}=lim_{k \to 0}\frac{f(k)}{\frac{k}{3}}=
lim_{k \to 0}3\frac{f(k)}{k}=3

b)
lim_{x \to 0}\frac{f(x^{2})}{x}=lim_{x \to 0}\frac{f(x^{2}).x}{x.x}=lim_{x \to 0}\frac{f(x^{2}).x}{x^{2}}=0

Espero que seja isso e que te ajude.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor jvabatista » Qua Jun 06, 2012 17:32

Muito obrigado! Foi de grande ajuda. Continuarei enviando dúvidas que me surgirem. Abraços.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor adauto martins » Ter Out 14, 2014 20:05

a)f(3x)/x=3.(f(x3x)/3x)...como \lim_{x\rightarrow0}f(x)/x=1,entao\lim_{x\rightarrow0}f(3x)/3x=1,portanto 3.\lim_{x\rightarrow0}f(3x)/3x=3...
b)\lim_{x\rightarrow0}f({x}^{2})/x=\lim_{x\rightarrow0}x.(f({x}^{2})/{x}^{2})=\lim_{x\rightarrow0}x.\lim_{x\rightarrow0}f({x}^{2})/({x}^{2})=0.1=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}