• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] Propriedades ou definição formal?

[limites] Propriedades ou definição formal?

Mensagempor jvabatista » Qua Jun 06, 2012 11:43

Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.

Seja f uma função definioda em R e \lim_{x\rightarrow0}\frac{f(x)}{x} = 1 . Mostre que:

a) \lim_{x\rightarrow0}\frac{f(3x)}{x} = 3

b) \lim_{x\rightarrow0}\frac{f({x}^{2})}{x} = 0.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor hygorvv » Qua Jun 06, 2012 15:58

jvabatista escreveu:Como posso resolver o exercício abaixo? Tentei utilizar propriedades dos limites, definição formal, mas não cheguei a lugar algum.

Seja f uma função definioda em R e \lim_{x\rightarrow0}\frac{f(x)}{x} = 1 . Mostre que:

a) \lim_{x\rightarrow0}\frac{f(3x)}{x} = 3

b) \lim_{x\rightarrow0}\frac{f({x}^{2})}{x} = 0.


a)Sendo 3x=k, temos:
lim_{x \to 0} \frac{f(3x)}{x}=lim_{k \to 0}\frac{f(k)}{\frac{k}{3}}=
lim_{k \to 0}3\frac{f(k)}{k}=3

b)
lim_{x \to 0}\frac{f(x^{2})}{x}=lim_{x \to 0}\frac{f(x^{2}).x}{x.x}=lim_{x \to 0}\frac{f(x^{2}).x}{x^{2}}=0

Espero que seja isso e que te ajude.
hygorvv
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Ter Jun 05, 2012 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor jvabatista » Qua Jun 06, 2012 17:32

Muito obrigado! Foi de grande ajuda. Continuarei enviando dúvidas que me surgirem. Abraços.
jvabatista
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Abr 16, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [limites] Propriedades ou definição formal?

Mensagempor adauto martins » Ter Out 14, 2014 20:05

a)f(3x)/x=3.(f(x3x)/3x)...como \lim_{x\rightarrow0}f(x)/x=1,entao\lim_{x\rightarrow0}f(3x)/3x=1,portanto 3.\lim_{x\rightarrow0}f(3x)/3x=3...
b)\lim_{x\rightarrow0}f({x}^{2})/x=\lim_{x\rightarrow0}x.(f({x}^{2})/{x}^{2})=\lim_{x\rightarrow0}x.\lim_{x\rightarrow0}f({x}^{2})/({x}^{2})=0.1=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 700
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.