• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de linha - 2

Integral de linha - 2

Mensagempor DanielFerreira » Dom Jun 03, 2012 16:14

danjr5 escreveu:Calcule \int_{\lambda}^{}ydx + x^2dy onde\lambda é uma curva, cuja imagem é o segmento de extremidades (1, 1) e (2, 2), orientada de (1, 1) para (2, 2).

Fiz assim:
F(x, y) = (y, x^2)

\frac{\partial F_1}{\partial y} = 1

\frac{\partial F_2}{\partial x} = 2x

Como o campo vetorial não é conservativo, não posso aplicar o Teorema \oint_{\lambda}^{}F.dr = f(2,2) - f(1,1).

Então, pelo Teorema de Green:
\oint_{\lambda}^{}F.dr = \int_{}^{}\int_{D}^{}\left(\frac{\partial F_2}{\partial x}- \frac{\partial F_1}{\partial y} \right)dxdy

\oint_{\lambda}^{}F.dr = \int_{1}^{2}\int_{1}^{2}(2x - 1)dxdy

\oint_{\lambda}^{}F.dr = \int_{1}^{2}\left[x^2 - x \right]_{1}^{2}dy

\oint_{\lambda}^{}F.dr = \int_{1}^{2}2dy

\oint_{\lambda}^{}F.dr = \left[2y \right]_{1}^{2}

\oint_{\lambda}^{}F.dr = 2

Mas, de acordo com o gabarito a resposta certa é \frac{23}{6}.

Desde já agradeço.

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Integral de linha - 2

Mensagempor Russman » Dom Jun 03, 2012 18:48

Eu acredito que sua solução está correta.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Integral de linha - 2

Mensagempor DanielFerreira » Dom Jun 03, 2012 19:14

Russman,
valeu pela atenção!
O Teorema de Green aplica-se quando o caminho é fechado, então não pode ser aplicado em \lambda.

Numa conversa com o professor de Cálculo, ele deixou bem claro que deveríamos 'priorizar' os Teoremas(Green, Campo Gradiente) na resolução de Integrais de Linha. Enfim, entendi que a Definição deveria ser a última opção.

Pela Definição:
Parametrizando \lambda:
\sigma(t) = (t,t) ============> \sigma'(t) = (1,1)

x = t ================> dx = dt

y = t ================> dy = dt


\int_{\lambda }ydx + x^2dy = \int_{1}^{2}t.dt + t^2.dt

\int_{\lambda }ydx + x^2dy = \int_{1}^{2}(t + t^2)dt

\int_{\lambda }ydx + x^2dy = \left [\frac{t^2}{2} + \frac{t^3}{3} \right ]_{1}^{2}

\int_{\lambda }ydx + x^2dy = 2 + \frac{8}{3} - \frac{1}{2} - \frac{1}{3}

\int_{\lambda }ydx + x^2dy = \frac{23}{6}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 97 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.