• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguem me aquida aqui com essa derivada por favor?

Alguem me aquida aqui com essa derivada por favor?

Mensagempor henr1ke001 » Seg Mai 28, 2012 12:01

Ola galera to com um trabalho de matematica para entregar mas estou enroscado em um problema, tentei, tentei mais nao consegui fazer.
alguem me da uma ajudinha ae? ^^



Uma das fórmulas para gerenciamento de almoxarifado diz que o custo médio semanal para você encomendar, pagar e armazenar uma mercadoria é A(q) = km/q + cm + hq/2 . onde q é a quantidade que você encomenda quando o estoque (de sapatos, computadores, resistores, antenas, seja o que for) está baixo, k é o custo para fazer o pedido (que é constante, não importando quanto você pede), c é o custo do item (uma constante), m é o número de itens vendidos em uma semana (uma constante) e h é o custo semanal de armazenagem de um item (uma constante que leva em conta coisas como o espaço que o item ocupa, energia elétrica, custo do seguro e da segurança). Seu trabalho, como almoxarife, é determinar a quantidade, , que minimizará . Qual é essa quantidade? (A solução desse problema é conhecida como fórmula do tamanho do lote de Wilson).

obrigado a quem conseguir me ajudar!!
henr1ke001
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 28, 2012 11:54
Formação Escolar: GRADUAÇÃO
Área/Curso: sistemas de informacao
Andamento: cursando

Re: Alguem me aquida aqui com essa derivada por favor?

Mensagempor Max Cohen » Seg Mai 28, 2012 15:20

[Otimização]Cara, é um problema de otimização, então basta você derivar esta função e iguala-la a 0.
Veja: A'(q)=-km/q^2 + h/2, então A(q)=0, então -km/q^2 + h/2 = 0, então km/q^2 = h/2, então q^2 = km/h/2, então q^2 = 2km/h, então q = +- raiz(2km/h), você deve tomar o valor positivo, já que você deseja minimizar, então q = raizquadrada(2km/h).
Max Cohen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Mai 23, 2012 18:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: