por yonara » Ter Jun 30, 2009 20:19
Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer...
Determine todos os pontos onde a função

possui extremo relativo e esboce o seu gráfico.
-
yonara
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Jun 30, 2009 18:45
- Formação Escolar: GRADUAÇÃO
- Área/Curso: medicina veterinária
- Andamento: cursando
por Felipe Schucman » Seg Ago 03, 2009 21:15
Para derivar essa função precisamos usar a formula de derivação de um quociente (f(x)/g(x) )?= (f?(x)g(x) ? f(x)g?(x))/g(x)^2
yonara escreveu:Pessoal, esta questão está no meu trabalho, quero pedir a ajuda de vcs, pq me desculpem, mas eu não sei nem começar a fazer...
Determine todos os pontos onde a função

possui extremo relativo e esboce o seu gráfico.
Assim aplicando a formula fica assim

----> f´(x)= (4*(1+x^2) ? 4x*2x)/ (1+x^2)^2. Simplificando essa expressão e igualando a zero você tera os pontos criticos falta testar se são maximo e minimos(pois podem ser pontos de inflexão apenas) e se estão dentro do dominio, e pronto você tera a resposta!
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Desafio: função real]Determinar a função f(x)
por raimundosar » Qui Mai 05, 2016 19:02
- 1 Respostas
- 2464 Exibições
- Última mensagem por nakagumahissao

Sex Mai 06, 2016 00:25
Funções
-
- Determinar Função
por Tonga » Qui Jan 05, 2012 11:43
- 2 Respostas
- 1623 Exibições
- Última mensagem por Tonga

Qui Jan 05, 2012 18:28
Funções
-
- determinar se é função
por virginia » Qui Abr 25, 2013 13:43
- 3 Respostas
- 1636 Exibições
- Última mensagem por e8group

Sex Abr 26, 2013 16:04
Funções
-
- [Função 1°grau] determinar função.
por Thiago 86 » Ter Abr 23, 2013 11:27
- 2 Respostas
- 2409 Exibições
- Última mensagem por Thiago 86

Ter Abr 23, 2013 13:05
Funções
-
- função. determinar o seno de y
por franciscokael » Qui Out 21, 2010 15:48
- 1 Respostas
- 1350 Exibições
- Última mensagem por MarceloFantini

Qui Out 21, 2010 18:15
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.