• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Tripla

Integral Tripla

Mensagempor Cleyson007 » Qua Mai 16, 2012 11:41

Bom dia a todos!

Calcule \int_{}^{}\int_{}^{}{\int_{}^{}}_{R}\,\,xyz\,\,dxdydz, onde R = [0,1] x [1,2] x [0,3].

A montagem é essa mesma? --> \int_{0}^{1}\int_{1}^{2}\int_{0}^{3}xyz\,dxdydz

Como resolver esse exercício?

Se alguém puder me ajudar, agradeço.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1220
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral Tripla

Mensagempor Cleyson007 » Qua Mai 16, 2012 15:31

Boa tarde a todos!

Parti da montagem acima e consegui desenvolver encontrando 27/8 como resposta :y:

Agora minha dúvida é: Como fazer o esboço da região R de integração?

Aguardando..

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1220
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Integral Tripla

Mensagempor LuizAquino » Sex Mai 18, 2012 20:14

Cleyson007 escreveu:Calcule \int_{}^{}\int_{}^{}{\int_{}^{}}_{R}\,\,xyz\,\,dxdydz, onde R = [0,1] x [1,2] x [0,3].

A montagem é essa mesma? --> \int_{0}^{1}\int_{1}^{2}\int_{0}^{3}xyz\,dxdydz


Note a sequência de diferenciais que aparecem na integral: dxdydz.

Desse modo, primeiro estamos integrando em relação a x, depois em relação a y e por fim em relação a z. Como R = [0,\, 1]\times [1,\,2]\times [0,\,3] , temos que x\in [0,\,1], y\in [1,\,2] e z\in [0,\,3] .

Portanto, a montagem adequada é:

\int_{0}^{3}\int_{1}^{2}\int_{0}^{1} xyz \,dx\,dy\,dz

Cleyson007 escreveu:Agora minha dúvida é: Como fazer o esboço da região R de integração?


É apenas um prima regular com base quadrada.
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?