
rafaelbr91 escreveu:Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
e não
como você escreveu.
. Como suas raízes são complexas e a concavidade da parábola é para cima, temos que
para todo x.
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)