• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Intergral da Sec(x) dx usando tg(x/2)=Z

Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor rycherr » Ter Mai 08, 2012 01:32

quero saber como se faz a integral de sec(x)dx utilizando o metodo de funções racionais de seno e cosseno.
aquele método no qual se substitui Z=tg(x/2) cos(x)=(1-z²)/(1+z²) e sen(x)=2Z/1+Z²

Obrigado.
rycherr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 08, 2012 01:25
Formação Escolar: GRADUAÇÃO
Área/Curso: ggbb
Andamento: cursando

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor LuizAquino » Ter Mai 08, 2012 12:04

rycherr escreveu:quero saber como se faz a integral de sec(x) dx utilizando o metodo de funções racionais de seno e cosseno.
aquele método no qual se substitui Z=tg(x/2) cos(x)=(1-z²)/(1+z²) e sen(x)=2Z/1+Z²


Note que:

\int \sec x \, dx = \int \frac{1}{\cos x} \, dx = \int \frac{1 + \,\textrm{tg}^2\,\frac{x}{2}}{1 - \,\textrm{tg}^2\,\frac{x}{2}} \, dx

Agora faça a substituição:

z = \textrm{tg} \,\frac{x}{2}

dz = \frac{1}{2}\sec^2 \,\frac{x}{2}\,dx

Lembrando da identidade trigonométrica 1 + \textrm{tg}^2\,\alpha= \sec^2 \alpha , podemos reescrever dz como sendo:

dz = \frac{1}{2}\left(1 + \,\textrm{tg}^2\,\frac{x}{2}\right)\,dx

Agora tente continuar a partir daí.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor rycherr » Ter Mai 08, 2012 16:28

sim, até ai eu fiz, parei em ln l 1+cosx+senx/1+cosx-senx l

se igualar isso á ln l secx+tgx l prova-se que é verdadeiro, mas como chegar em ln l secx+tgx l sómente desdobrando a formula?
rycherr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 08, 2012 01:25
Formação Escolar: GRADUAÇÃO
Área/Curso: ggbb
Andamento: cursando

Re: Intergral da Sec(x) dx usando tg(x/2)=Z

Mensagempor LuizAquino » Ter Mai 08, 2012 17:01

rycherr escreveu:sim, até ai eu fiz, parei em ln l 1+cosx+senx/1+cosx-senx l

se igualar isso á ln l secx+tgx l prova-se que é verdadeiro, mas como chegar em ln l secx+tgx l sómente desdobrando a formula?


Se você já tinha desenvolvido até certa parte, então por que não enviou o seu desenvolvimento?

Note que isso economizaria o tempo da pessoa que está lhe ajudando, pois ela poderia apenas corrigir as partes que estavam erradas. Ou ainda, apenas informar como prosseguir.

Além disso, informar sobre suas tentativas faz parte das Regras deste Fórum. Vide a Regra 1.

De qualquer modo, refaça as suas contas, pois você deveria chegar em:

\int \sec x \, dx = \ln\left|\frac{1 + \,\textrm{tg}\,\frac{x}{2}}{1 - \,\textrm{tg}\,\frac{x}{2}}\right| + c

A partir daí, temos que:

\ln\left|\frac{1 + \,\textrm{tg}\,\frac{x}{2}}{1 - \,\textrm{tg}\,\frac{x}{2}}\right| = \ln\left|\frac{1 + \,\frac{\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2}}}{1 - \,\frac{\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2}}}\right|

= \ln\left|\frac{\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}}{\cos \frac{x}{2} - \,\textrm{sen}\,\frac{x}{2}}\right|

= \ln\left|\frac{\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)}{\left(\cos \frac{x}{2} - \,\textrm{sen}\,\frac{x}{2}}\right)\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)\right|

= \ln\left|\frac{\left(\cos \frac{x}{2} + \,\textrm{sen}\,\frac{x}{2}\right)^2}{\cos^2 \frac{x}{2} - \,\textrm{sen}^2\,\frac{x}{2}}\right|

Agora tente continuar.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}