• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada do Quociente

Derivada do Quociente

Mensagempor dekol2 » Dom Mai 06, 2012 20:39

Olá! estou com uma certa dificuldade para derivar uma função, se alguém poder me ajudar agradeço

f(x)=

Imagem
dekol2
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 06, 2012 20:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Derivada do Quociente

Mensagempor Claudin » Dom Mai 06, 2012 21:41

Basta seguir as regras de derivação

assim temos que:

\frac{f(x)}{g(x)}= \frac{f\prime(x)g(x)-f(x)g\prime(x)}{[g(x)]^2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada do Quociente

Mensagempor dekol2 » Seg Mai 07, 2012 01:07

Conheço a regra do quociente, mas se fosse possível gostaria de ver o desenvolvimento do problema para tirar uma duvida, pois em uma vídeo aula o professor pôs o resultado da derivada direta e não desenvolveu, e estou tendo dificuldades para desenvolve-la.
dekol2
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 06, 2012 20:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Derivada do Quociente

Mensagempor DanielFerreira » Seg Mai 07, 2012 02:21

f(x) = \frac{x^2 - 4}{(x^2 + 4)^2}


f'(x) = \frac{2x.(x^2 + 4)^2 - (x^2 - 4).2.(x^2 + 4)^1.2x}{[(x^2 + 4)^2]^2}


f'(x) = \frac{2x(x^2 + 4)[(x^2 + 4) - 2(x^2 - 4)]}{(x^2 + 4)^4}


f'(x) = \frac{2x[(x^2 + 4) - 2(x^2 - 4)]}{(x^2 + 4)^3}


f'(x) = \frac{2x[x^2 + 4 - 2x^2 + 8]}{(x^2 + 4)^3}


f'(x) = \frac{2x[- x^2 + 12]}{(x^2 + 4)^3}


f'(x) = - \frac{2x(x^2 - 12)}{(x^2 + 4)^3}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Derivada do Quociente

Mensagempor LuizAquino » Seg Mai 07, 2012 11:34

dekol2 escreveu:Olá! estou com uma certa dificuldade para derivar uma função, se alguém poder me ajudar agradeço

f(x)=
figura.png
figura.png (4.96 KiB) Exibido 1442 vezes



Por favor, procure usar o LaTeX para inserir em sua mensagem as notações desejadas. Vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

Inclusive, o uso do LaTeX para escrever as notações faz parte das Regras deste Fórum (regra 2).

dekol2 escreveu:Conheço a regra do quociente, mas se fosse possível gostaria de ver o desenvolvimento do problema para tirar uma duvida, pois em uma vídeo aula o professor pôs o resultado da derivada direta e não desenvolveu, e estou tendo dificuldades para desenvolve-la.


Apenas para referência, a derivada dessa função aparece na videoaula "21. Cálculo I - Teste da Primeira e da Segunda Derivada". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)