• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício teórico

Exercício teórico

Mensagempor Cleyson007 » Sex Abr 27, 2012 12:28

Bom dia a todos!

Mostre que se a\in(0,+\infty) temos \lim_{n\rightarrow\infty}\sqrt[n]{n}=1

Se alguém puder me ajudar, agradeço.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício teórico

Mensagempor fraol » Sex Abr 27, 2012 13:04

Bom dia,

Presumo que a expressão seja: \lim_{n\rightarrow\infty}\sqrt[n]{a}=1

Veja que \sqrt[n]{a}=a^{\frac{1}{n}}.

O que acontece com o expoente \frac{1}{n} quando n tende ao infinito?

Veja se consegue prosseguir, do contrário manda a dúvida pra cá.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício teórico

Mensagempor Cleyson007 » Sáb Abr 28, 2012 10:58

Bom dia Fraol!

Amigo, sinceramente eu não tenho noção de como prosseguir.. Se puder me ajudar com a resolução do exercício ficarei muito grato.

Fico no aguardo.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Exercício teórico

Mensagempor fraol » Sáb Abr 28, 2012 11:33

Bom dia,

Então vamos continuar:

fraol escreveu:O que acontece com o expoente \frac{1}{n} quando n tende ao infinito?


Vamos atribuir alguns valores crescentes para n e ver como \frac{1}{n} varia:

n = 1 => \frac{1}{n} = 1

n = 10 => \frac{1}{n} = 0.1

n = 100 => \frac{1}{n} = 0.01

n = 1000 => \frac{1}{n} = 0.001

n = 10000 => \frac{1}{n} = 0.0001

...

Note que ao aumentarmos o valor de n sucessivamente, o valor de \frac{1}{n} se aproxima cada vez mais de 0. Costuma se dizer que a sequência \left( \frac{1}{n} \right) tende a 0 quando n tende ao infinito.

Agora aplicando isso ao limite original teremos:

\lim_{n\rightarrow\infty}\sqrt[n]{a} = \lim_{n\rightarrow\infty} a^{\frac{1}{n}} = a^0 = 1.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Exercício teórico

Mensagempor Guill » Sáb Abr 28, 2012 11:50

Esse limite não pode ser resolvido substituindo o valor, já que {\infty}^{0} é uma indeterminação. Mas, observe que supondo:

y = {n}^{\frac{1}{n}}

\lim_{n\rightarrow\infty}y = \lim_{n\rightarrow\infty}{n}^{\frac{1}{n}}

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}ln\left({n}^{\frac{1}{n}} \right)

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{1}{n}.ln(n)

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{ln(n)}{n}


Aplicando a regra de L'hospital:

\lim_{n\rightarrow\infty}ln(y) = \lim_{n\rightarrow\infty}\frac{\frac{1}{n}}{1}=0


Uma vez que ln(y)\rightarrow0 quando n\rightarrow\infty, y\rightarrow1 quando n\rightarrow\infty. Dessa forma:

\lim_{n\rightarrow\infty}y = \lim_{n\rightarrow\infty}\sqrt[n]{n}=1
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?