• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrável ou não

Integrável ou não

Mensagempor marciommuniz » Qui Jun 11, 2009 00:54

Olá amigos do site..
estive esses dias discutindo num topico do orkut sobre a integral:

∫ln |3x - 2| dx
Lá eles estavam falando que não era integrável, mas não me deram explicações do porquê.
Bem, ao meu ver eu fiz essa integral assim:

∫ln|3x-2|dx
INTEGRAÇÃO POR PARTES

u = ln 3x -2
du = (ln 3x-2)' --> REGRA DA CADEIA du = 3/(3x-2)dx
dv = 1. dx --> v = x

∫ln |3x-2|dx = uv - ∫vdu = ln |3x-2|.x - ∫3/(3x-2)dx

vamos agora fazer a integral em negrito

∫3/(3x-2)dx

u = 3x -2 du = 3 dx, portando dx = 1/3du , então
∫(u+2)/u . 1/3du = 1/3∫(u+2)/u

= 1/3∫ u/u + 2/u = ∫1 + ∫2/3x-2 = x + 2∫dx/3x-2

vamos fazer a outra integral em negrito

u = 3x-2 du = 3dx logo, dx = 1/3du
∫dx/3x-2 = ∫dx/u . 1/3du = 1/3∫dx/u = 1/3.ln |3x-2|

Agora a parte enjoada ahhahaha JUNTAR TUDO!

∫ln |3x-2|dx = ln |3x-2|.x - x - 2/3.ln|3x-2| + K, sendo K uma constante.
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Integrável ou não

Mensagempor Lucio Carvalho » Qui Ago 20, 2009 13:17

Olá marciommuniz,
Sou novo no site e sei que o teu tópico já tem algum tempo. Talvez até já chegaste ao resultado!
Também considero que seja possível integrar!
Apresento aqui uma sugestão.
\int_{}^{}ln|3.x-2|.dx
Integrando por partes, ficaria:

u = ln|3.x - 2| => u' = 3/(3.x - 2)

v' = 1 => v = x - 2/3 (Aqui está a novidade!)

Então: \int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-\int_{}^{}\frac{3.x-2}{3.x-2}.dx

\int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-\int_{}^{}1.dx

E finalmente, teremos: \int_{}^{}ln|3.x-2|dx=(x-\frac{2}{3}).ln(3.x-2)-x+k, sendo k = constante.

Penso ser esse um dos resultados. Entretanto, aguardo a opinião dos outros participantes!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.