• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor carvalhothg » Sex Abr 06, 2012 21:42

Como calculo o limite abaixo, sem utilizar a regra de L'Hospital:

\lim_{t\rightarrow\infty}t.{e}^{-st}

Onde s é um numero complexo.
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites

Mensagempor LuizAquino » Sáb Abr 07, 2012 14:19

carvalhothg escreveu:Como calculo o limite abaixo, sem utilizar a regra de L'Hospital:

\lim_{t\rightarrow\infty}t.{e}^{-st}

Onde s é um numero complexo.


A parte real de s é maior ou menor do que zero?

Vale lembrar que para calcular um limite do tipo \lim_{t\to+\infty} te^{-kt} , com k real não nulo, sem usar a Regra de L'Hospital, só podemos aplicar uma análise qualitativa (não há simplificações algébricas).

Se k > 0, então podemos escrever esse limite como \lim_{t\to +\infty} \frac{t}{e^{kt}} . Tanto o numerador quanto o denominador tendem para infinito. Entretanto, o crescimento do denominador é muito maior do que o crescimento do numerador. Nesse caso, teremos que \lim_{t\to +\infty} \frac{t}{e^{kt}} = 0 .

Por outro lado, se k < 0, então \lim_{t\to +\infty} t e^{-kt} = (+\infty)\cdot(+\infty) = +\infty .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: