• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver essa questão?

Como resolver essa questão?

Mensagempor jmoura » Sáb Mar 31, 2012 23:58

Me deparei com uma questão de uma prova antiga que não estou conseguindo resolver:

" Verifique se existe um número real L tal que a função f definida por

f(x)= cos\left(\frac{1}{\sqrt[]{x}} \right). sen\left(\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}} \right), se x>0 e
f(x)= L, se x=0

é contínua no intervalo [0, +\infty). "
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Como resolver essa questão?

Mensagempor NMiguel » Dom Abr 01, 2012 08:06

f(x) é continua em \[[0,+\infty )\] se e só se \[f(0)=\lim_{x \to 0}f(x)\], ou seja, \[L=\lim_{x \to 0}f(x)\].

Como
\lim_{x \to 0}f(x)= \lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}\right )\cdot \sin \left (\frac{\sqrt{x+1}-1}{\sqrt{x}}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \sin \left (\frac{\sqrt{x+1}-1}{\sqrt{x}} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}\right )

=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \sin \left ( \frac{x+1-1}{\sqrt{x}\left (\sqrt{x+1}+1  \right )}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \sin \left ( \frac{x+1-1}{\sqrt{x}\left (\sqrt{x+1}+1  \right )}\right )

=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \lim_{x \to 0}\sin \left ( \frac{x}{\sqrt{x}\left (\sqrt{x+1}+1  \right )}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \lim_{x \to 0}\sin \left ( \frac{\sqrt{x}}{\sqrt{x+1}+1}\right )

\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \sin \left ( \frac{0}{2}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot 0=0

Assim, f(x) é continua em \[[0,+\infty )\] se e só se L=0
Editado pela última vez por NMiguel em Dom Abr 01, 2012 19:14, em um total de 1 vez.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Como resolver essa questão?

Mensagempor Fabio Wanderley » Dom Abr 01, 2012 16:05

NMiguel escreveu:\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \lim_{x \to 0}\sin \left ( \frac{0}{2}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot 0=0


Achei interessante esse exercício. Nunca havia feito um igual. Mas na resolução dele, nesta passagem não precisaria afirmar que a função cos\left(\frac{1}{\sqrt[]{x}} \right) é limitada, e aplicar o Teorema do Confronto para provar que o limite é igual a zero?
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: Como resolver essa questão?

Mensagempor NMiguel » Dom Abr 01, 2012 19:13

Sim. De facto é necessário. Sem isso, não poderíamos afirmar que este limite é igual a 0. Obrigado pela observação.

Fica então um complemento à resolução.

\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot \lim_{x \to 0}\sin \left ( \frac{0}{2}\right )=\lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot 0=0


Sabemos que -1\leq \cos \left (\frac{1}{\sqrt{x}}  \right )\leq 1.

Assim, -1 \cdot 0 \leq \cos \left (\frac{1}{\sqrt{x}}  \right ) \leq 1 \cdot 0, ou seja, 0 \leq \cos \left (\frac{1}{\sqrt{x}}  \right ) \leq 0.

Daqui, sai que \lim_{x \to 0}\cos \left (\frac{1}{\sqrt{x}}  \right )\cdot 0=0.

Assim, fica completa a demonstração :)
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 39 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}