Uma determinada utilidade tem custo fixo de produção igual a 1000,00 e custo unitário de 10,00. A sua curva função de demanda é dada por p=110-q, onde q é a quantidade demandada e produzida com variação de 0 a 50 e p é o preço unitário de venda.
DETERMINE UTILIZANDO DERIVADA, QUA É A QUANTIDADE Q QUE DETERMINA O LUCRO MÁXIMO
bom eu sei que a função lucro é dada por rt(x) - ct(x) e que o lucro máximo é a derivada desse lucro igual a zero, sei também que c(x)= 1000 +110x porém estou com dificuldade de montar a função receita total. Alguém poderia me ajudar?



![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)