• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor panneitz » Dom Jun 07, 2009 19:55

Preciso de ajuda, pois passei o domingo tentando fazer e não consegui, por isso estou postando aqui.

1 - Calcule: \int_{1}^{0}\sqrt[5]{{x}^{2}}\ dx

2 - Calcule a integral da função: f(x)={e}^{x}+ 5 +\sqrt[]{x}

3 - Calcule a integral da função: f(x)=(2cosx+ \frac{1}{\sqrt[ ]{x}})dx

Preciso dos exemplos para estudar a maneira de proceder com estes cálculos.

Desde já agradeço.
panneitz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 05, 2009 22:00
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Integrais

Mensagempor Marcampucio » Dom Jun 07, 2009 20:31

Integrais são resolvidas por fórmulas de integração. Antes de mais nada você precisa de um formulário. Vou deixar um link

Regras de Integração-clique aqui

1- \int_0^1{\sqrt[5]{x^2}dx=\int_0^1{x^{\frac{2}{5}}=\int_0^1{x^n}=\frac{x^{n+1}}{n}

\int_0^1{\sqrt[5]{x^2}dx=\frac{5x^{\frac{7}{5}}}{2}/_0^1=\frac{5}{2}

2- \int{e^x+5+\sqrt{x}dx=\int{e^x}dx+\int{5dx}+\int{x^{\frac{1}{2}}dx

experimente fazer esta. Use o formulário. Coloque suas tentativas se tiver dúvidas.

3- \int(2cos(x)+\frac{1}{\sqrt{x}})dx=2\int{cos(x)dx}+\int{x^{-\frac{1}{2}}dx}

tá fácil. Use as regras.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59