• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite trigonométrico

Limite trigonométrico

Mensagempor jmoura » Dom Mar 25, 2012 21:25

Como calculo esse limite:
\lim_{x->0} \frac{1-cos^3(x)}{x.sen(x).cos(x)}
jmoura
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Mar 23, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Limite trigonométrico

Mensagempor cjunior94 » Dom Mar 25, 2012 22:36

Primeiro faça a diferença de cubo: (a-b)(a^2+ab+b^2)=a^3+b^3

\lim_{x->0}\frac{(1-cos(x))(1+cos(x)+1)}{x*sen(x)*cos(x)}

Agora basta multiplicar pelo conjugado:

\lim_{x->0}\frac{(cos(x)+2)*(1-cos(x))*(1+cos(x))}{x*sen(x)*cos(x)*(1+cos(x))}

\lim_{x->0}\frac{(cos(x)+2)*(1-cos^2(x))}{x*sen(x)*cos(x)*(1+cos(x))}

Sendo: 1-cos^2(x)=sen^2(x)

Temos:
\lim_{x->0}\frac{(cos(x)+2)*(sen^2(x))}{x*sen(x)*cos(x)*(1+cos(x))}

Organizando os temos, temos então:
\lim_{x->0}\frac{sen(x)}{x}*\frac{sen(x)}{sen(x)}*\frac{cos(x)+2}{cos(x)*(1+cos(x)}

Sabendo que o limite dos produtos é o produto dos limites, temos:

1 * 1 * \frac{3}{2} = \frac{3}{2}
cjunior94
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Mar 18, 2012 11:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite trigonométrico

Mensagempor LuizAquino » Seg Mar 26, 2012 13:02

cjunior94 escreveu:Primeiro faça a diferença de cubo: (a-b)(a^2+ab+b^2)=a^3+b^3

\lim_{x->0}\frac{(1-cos(x))(1+cos(x)+1)}{x*sen(x)*cos(x)}


Aqui há dois erros.

Primeiro, o produto notável é:

(a-b)\left(a^2+ab+b^2\right)=a^3 - b^3

E em segundo, aplicando esse produto notável temos que:

\lim_{x\to 0} \dfrac{1 - \cos^3 x}{x \, \textrm{sen}\,x \cos x} = \lim_{x\to 0} \frac{(1 - \cos x)\left(1 + \cos x + \cos^2 x\right)}{x \, \textrm{sen}\,x \cos x}

Agora refaça a sua resolução. No final, a resposta vai continuar igual a 3/2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)