• Anúncio Global
    Respostas
    Exibições
    Última mensagem

INTEGRAL - VOLUME

INTEGRAL - VOLUME

Mensagempor Harley » Dom Mar 25, 2012 08:34

Estou desesperada, alguém me ajuda nesse assunto, tenho prova amanhã e ainda me enrolo! =(

Usando invólucros cilindricos, determine o volume do sólido de revolução obtido ao se girar, em torno do eixo Y, a região delimitada pelo gráfico de y = x² - 2x + 1 o eixo X e a reta x = 2. Resp.: 7pi/6
Harley
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 25, 2012 08:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: INTEGRAL - VOLUME

Mensagempor LuizAquino » Dom Mar 25, 2012 12:25

Harley escreveu:Usando invólucros cilindricos, determine o volume do sólido de revolução obtido ao se girar, em torno do eixo Y, a região delimitada pelo gráfico de y = x² - 2x + 1 o eixo X e a reta x = 2. Resp.: 7pi/6


O primeiro passo é determinar a região delimitada. Essa região está ilustrada na figura abaixo, indicada pela letra R.

figura.png
figura.png (8.55 KiB) Exibido 949 vezes


Em seguida, para calcular o volume do sólido desejado, basta resolver a integral:

V = \int_1^2 2\pi x f(x)\,dx = \int_1^2 2\pi x\left(x^2 - 2x + 1\right)\,dx

Agora tente terminar o exercício.

Harley escreveu:Estou desesperada, alguém me ajuda nesse assunto, tenho prova amanhã e ainda me enrolo! =(


Se desejar estudar mais o conteúdo, então eu gostaria de indicar a videoaula "39. Cálculo I - Cálculo de Volumes Pelo Método das Cascas Cilíndricas". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}