• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de (e^2x)/x -- urgente!

Integral de (e^2x)/x -- urgente!

Mensagempor Moniky Ribeiro » Qui Jun 04, 2009 10:35

Pessoal, bom dia! Eu estou cursando a disciplina de cálculo 2 e recebi uma questão para resolver e estou muito na dúvida mesmo. Na verdade, não estou sabendo resolver. Passar esse semestre nessa disciplina está dependendo dela. Por favor se alguém puder me ajudar: É a integral de (e^2x)/x. VAleu mesmo!!
Moniky Ribeiro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jun 04, 2009 10:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Molina » Qui Jun 04, 2009 20:38

Moniky Ribeiro escreveu:Pessoal, bom dia! Eu estou cursando a disciplina de cálculo 2 e recebi uma questão para resolver e estou muito na dúvida mesmo. Na verdade, não estou sabendo resolver. Passar esse semestre nessa disciplina está dependendo dela. Por favor se alguém puder me ajudar: É a integral de (e^2x)/x. VAleu mesmo!!


Boa noite, Moniky.

A integral que você deseja calcular é \int \frac{{e}^{2x}}{x}dx

Note que \int \frac{{e}^{2x}}{x}dx = \int {e}^{2x}\frac{1}{x}dx

Chame u=e^{2x} logo du=2{e}^{2x}dx
e
dv=\frac{1}{x} dx logo v=ln|x|

Agora utilize a integração por partes, substituindo as letras:

\int udv = uv - \int vdu

Se não me equivoquei em nada, acho que é isso,
Note que substituindo as letras na parte da esquerda da igualdade, temos que:

\int udv = \int e^{2x}\frac{1}{x} dx = \int \frac{e^{2x}}{x}dx


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Marcampucio » Qui Jun 04, 2009 21:51

Oá molina,

\int{\frac{e^{2x}}{x}}=e^{2x}.ln|x|-\int{ln|x|.e^{2x}dx}

e agora? parece pior...
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Molina » Sex Jun 05, 2009 11:08

Marcampucio escreveu:Oá molina,

\int{\frac{e^{2x}}{x}}=e^{2x}.ln|x|-\int{ln|x|.e^{2x}dx}

e agora? parece pior...


É verdade, não tinha reparado nisso.
Então temos que tentar outra tática ou
tentar resolver aquela segunda integral usando o mesmo procedimento.

Qualquer novidade eu coloco aqui.

Abraços e valeu pelo toque. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Marcampucio » Sáb Jun 06, 2009 15:59

Por favor verifiquem se cometi êrros:
Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor ampat » Sáb Jun 27, 2009 09:52

Erraste na parte em que consideras u=ln(y)

Acho que neste caso se tem de usar o polinómio de Taylor para calcular esse integral :)

e^{2x}=1+(2x)+\frac{(2x)^{2}}{2!}+\frac{(2x)^{3}}{3!}+\frac{(2x)^{4}}{4!}+....
ampat
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 27, 2009 08:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: Física Tecnológica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: