• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de (e^2x)/x -- urgente!

Integral de (e^2x)/x -- urgente!

Mensagempor Moniky Ribeiro » Qui Jun 04, 2009 10:35

Pessoal, bom dia! Eu estou cursando a disciplina de cálculo 2 e recebi uma questão para resolver e estou muito na dúvida mesmo. Na verdade, não estou sabendo resolver. Passar esse semestre nessa disciplina está dependendo dela. Por favor se alguém puder me ajudar: É a integral de (e^2x)/x. VAleu mesmo!!
Moniky Ribeiro
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jun 04, 2009 10:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Molina » Qui Jun 04, 2009 20:38

Moniky Ribeiro escreveu:Pessoal, bom dia! Eu estou cursando a disciplina de cálculo 2 e recebi uma questão para resolver e estou muito na dúvida mesmo. Na verdade, não estou sabendo resolver. Passar esse semestre nessa disciplina está dependendo dela. Por favor se alguém puder me ajudar: É a integral de (e^2x)/x. VAleu mesmo!!


Boa noite, Moniky.

A integral que você deseja calcular é \int \frac{{e}^{2x}}{x}dx

Note que \int \frac{{e}^{2x}}{x}dx = \int {e}^{2x}\frac{1}{x}dx

Chame u=e^{2x} logo du=2{e}^{2x}dx
e
dv=\frac{1}{x} dx logo v=ln|x|

Agora utilize a integração por partes, substituindo as letras:

\int udv = uv - \int vdu

Se não me equivoquei em nada, acho que é isso,
Note que substituindo as letras na parte da esquerda da igualdade, temos que:

\int udv = \int e^{2x}\frac{1}{x} dx = \int \frac{e^{2x}}{x}dx


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Marcampucio » Qui Jun 04, 2009 21:51

Oá molina,

\int{\frac{e^{2x}}{x}}=e^{2x}.ln|x|-\int{ln|x|.e^{2x}dx}

e agora? parece pior...
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Molina » Sex Jun 05, 2009 11:08

Marcampucio escreveu:Oá molina,

\int{\frac{e^{2x}}{x}}=e^{2x}.ln|x|-\int{ln|x|.e^{2x}dx}

e agora? parece pior...


É verdade, não tinha reparado nisso.
Então temos que tentar outra tática ou
tentar resolver aquela segunda integral usando o mesmo procedimento.

Qualquer novidade eu coloco aqui.

Abraços e valeu pelo toque. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor Marcampucio » Sáb Jun 06, 2009 15:59

Por favor verifiquem se cometi êrros:
Imagem
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado

Re: Integral de (e^2x)/x -- urgente!

Mensagempor ampat » Sáb Jun 27, 2009 09:52

Erraste na parte em que consideras u=ln(y)

Acho que neste caso se tem de usar o polinómio de Taylor para calcular esse integral :)

e^{2x}=1+(2x)+\frac{(2x)^{2}}{2!}+\frac{(2x)^{3}}{3!}+\frac{(2x)^{4}}{4!}+....
ampat
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 27, 2009 08:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: Física Tecnológica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.