• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Onde foi que eu errei

Onde foi que eu errei

Mensagempor Gabriel Doria » Sex Mar 23, 2012 00:03

Derive a seguinte equação implícita:
y^3=\frac{x-y}{x+y}

Minha solução:
y^3=\frac{x-y}{x+y}\to\ln{y^3}=\ln(\frac{x-y}{x+y})\to\\ \frac{d[\ln y^3]}{dx}=\frac{d[\ln(x-y)]}{dx}-\frac{d[\ln(x+y)]}{dx}\\ \frac{3\cdot y'}{y}=\frac{1-y'}{x-y}-\frac{1+y'}{x+y}\\ \frac{3y'}{y}=\frac{(1-y')(x+y)-(1+y')(x-y)}{x^2-y^2}\\ \frac{3y'}{y}=\frac{x-y-y'(x+y)-[x-y+y'(x-y)]}{x^2-y^2}\\ \frac{3y'}{y}=\frac{2y-y'(2x)}{x^2-y^2}\\ \frac{3y'}{y}+\frac{y'2x}{x^2-y^2}=\frac{2y}{x^2-y^2}\\ y'(\frac{3}{y}+\frac{2x}{x^2-y^2})=\frac{2y}{x^2-y^2}\\ y'(\frac{3x^2-3y^2+2xy}{y\cdot(x^2-y^2)})=\frac{2y}{x^2-y^2}\\ y'=\frac{2y^2}{3x^2-3y^2+2xy}

Onde foi que eu errei?
Gabriel Doria
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Dez 11, 2011 00:42
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Onde foi que eu errei

Mensagempor nietzsche » Sex Mar 23, 2012 02:14

Na quinta linha quando você distribui o produto era pra ser positivo:

y^3=\frac{x-y}{x+y}\to\ln{y^3}=\ln(\frac{x-y}{x+y})\to\\ \frac{d[\ln y^3]}{dx}=\frac{d[\ln(x-y)]}{dx}-\frac{d[\ln(x+y)]}{dx}\\ \frac{3\cdot y'}{y}=\frac{1-y'}{x-y}-\frac{1+y'}{x+y}\\ \frac{3y'}{y}=\frac{(1-y')(x+y)-(1+y')(x-y)}{x^2-y^2}\\ ->\frac{3y'}{y}=\frac{x+y-y'(x+y)-[x-y+y'(x-y)]}{x^2-y^2}\\
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Onde foi que eu errei

Mensagempor MarceloFantini » Sex Mar 23, 2012 08:16

Este logaritmo não faz sentido, pois não temos garantia de que y^3 é positivo. Veja os passos do Wolfram:

http://www.wolframalpha.com/input/?i=im ... 28x%2By%29
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.