• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Introdução as Equaçoes Diferenciais Ordinárias - Unicidade

Introdução as Equaçoes Diferenciais Ordinárias - Unicidade

Mensagempor dileivas » Qua Mar 14, 2012 21:32

Sinceramente, não entendi o enunciado do exercício, se alguém puder me dar uma luz de como iniciá-lo eu agradeceria muito:

É possível garantir a unicidade de solução para a equação diferencial y^\prime\ = \sqrt {y^2-9} passando pelo ponto (1,4)? E passando pelo ponto (2, -3)? Justifique.

Obrigado! =)
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando

Re: Introdução as Equaçoes Diferenciais Ordinárias - Unicida

Mensagempor TheoFerraz » Qua Mar 14, 2012 22:51

dileivas escreveu:Sinceramente, não entendi o enunciado do exercício, se alguém puder me dar uma luz de como iniciá-lo eu agradeceria muito:

É possível garantir a unicidade de solução para a equação diferencial y^\prime\ = \sqrt {y^2-9} passando pelo ponto (1,4)? E passando pelo ponto (2, -3)? Justifique.

Obrigado! =)



É até que simples. é possível resolver a questão sem resolver a equação até... Sempre que o exercicio pedir para "garantir a unicidade" ele quer que voce prove que só existe uma resposta (ou não). No caso ele quer que voce simplesmente verifique: "existe uma só resposta? ou não"

se voce está estudando "introdução às edo's " eu imagino que esse exercicio é teórico mesmo, não é para ser provado resolvendo a equação.

Voce conhece a ideia de "condições de contorno" ? Se sim, deve ser facil responder a pergunta:

Existe só UMA função que passa por (1,4) e resolve a equação diferencial ordinária y^\prime = \sqrt{y^2-9}

quer uma dica? outra forma de escrever a mesma equação é:

y^2 -{y^\prime}^{2} = 9
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Introdução as Equaçoes Diferenciais Ordinárias - Unicida

Mensagempor dileivas » Qui Mar 15, 2012 00:07

Super obrigado, vou tentar resolver e já posto minha solução =D
dileivas
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Mar 14, 2012 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências e Tecnologia / Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)