• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor cortes » Ter Mai 26, 2009 20:54

[tex]\lim_{x\rightarrow - 1} {x}^{2} - 1 /{7}^{x3}+{2}^{x2}-5x
Boa noite

Estou com duvida na resoluçao deste limite, ja tentei por divisão de polinomios e formula de bascara e nao chego a um resultado alguem pode me ajudar?
Editado pela última vez por cortes em Ter Mai 26, 2009 21:33, em um total de 5 vezes.
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 21:07

Boa noite e bem-vindo, cortes.

Se possível, expresse seu limite utilizando o editor LaTeX.
Há um tópico sobre o uso dele que pode exclarecer todas as suas dúvidas.

Assim ficará mais fácil dos outros entenderem seu problema, já que não dá pra ter nem idém a que valor x está tendendo.

Estou a suas ordens, abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 21:31

cortes escreveu:[tex]\lim_{x\rightarrow - 1} {x}^{2} - 1 /{7}^{x3}+{2}^{x2}-5x
Boa noite

Estou com duvida na resoluçao deste limite, ja tentei por divisão de polinomios e formula de bascara e nao chego a um resultado alguem pode me ajudar?
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 21:36

\lim_{x\rightarrow - 1} \frac{{x}^{2} - 1 }{{7x}^{3}+{2x}^{2}-5x}

Este aqui é o limite que você deseja descobrir, correto?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 21:41

Este mesmo.
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 21:55

Certo.

Você viu que dividindo todos os termos por x^3 e substituindo x por -1, ficariamos com uma ideterminação do tipo \frac{0}{0}.

Nestes casos, podemos usar uma regra chamada L'Hopital, porém, tem que conhecer derivada para usa-la.

Você já estudou (ou está estudando) deriavada?
:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 21:58

Sim verifiquei que o resultado da uma indeterminação.

Estou tbm estudando derivada.
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 22:02

Beleza então.

NEste caso você pode usar L'Hopital.
Consiste em pegar a expressão do numerador e derivar; pegar a expressão do numerador e derivar tambem. Faça isso até acabar com a indeterminação do tipo zero sobre zero ou infinito sobre infinito.

Caso você faça uma vez e não caia numa indeterminação, basta substituir x por -1 e encontrará o limite.

Faz aí e qualquer novidade é só postar.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 22:08

Voce diz fatorar ?

Ja fiz isso.
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 22:41

cortes escreveu:Voce diz fatorar ?

Ja fiz isso.


Não, eu digo em fazer a derivada de x^2-1 e a derivada 7x^3+2x^2-5x

Depois de derivar essas duas expressões você substitui -1 no lugar do x.
O resultado que você irá obter é o limite que você estava procurando.

Caso não entenda ainda o que é L'Hopital sugiro ler: pt.wikipedia.org/wiki/Regra_de_l'Hôpital

Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 22:46

minhas resposta esta dando -1/6 nao sei se esta certo

Fiz o seguinte:
\lim_{x\rightarrow-1}\frac{(x-1)(x +1)}{x({7}^{x3}+{2}^{x}-5}

substitui x({7}^{x3}+{2}^{x}-5} por x{a(x-x')(x-x")}

depois achei as raiz x' e x" e substitui na formula mas nao sei se esta certo
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 22:47

vou ler o conteudo indicado
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando

Re: Limite

Mensagempor Molina » Ter Mai 26, 2009 22:57

Sim. Deu a mesma resposta que a minha, usando L'Hopital.

Derivada de x^2 - 1 = 2x - 0

Derivada de 7x^3+2x^2-5x = 21x^2+4x-5

\lim_{x \rightarrow -1}\frac{2x}{21x^2-4x-5} \Rightarrow \frac{-2}{21-4-5} \Rightarrow \frac{-1}{6}

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limite

Mensagempor cortes » Ter Mai 26, 2009 23:05

obrigada
cortes
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Mai 25, 2009 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: contabeis
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 92 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D