• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Substituição

[Integral] Substituição

Mensagempor Aliocha Karamazov » Qui Fev 23, 2012 23:57

Pessoal, minha dúvida não é nem como resolver a integral, mas sim saber por que o método de substituição funciona. Para isso, vou usar um exemplo bem simples.

Quando eu quero calcular a integral indefinida \int \frac{x}{\sqrt{1+x^2}}dx

Uso a substituição, fazendo u=1+x^2 \Rightarrow \frac{du}{dx}=2x \Rightarrow du=2xdx

Aí vem:

\int \frac{x}{\sqrt{1+x^2}}dx=\frac{1}{2}\int\frac{1}{\sqrt{u}}du=\sqrt{u}+c'=\sqrt{1+x^2}+c

Quanto a isso, sem problemas. Mas, se a derivada de u em relação a x pode ser escrita como \frac{du}{dx}=2x, é só uma questão de notação. Por que, ao "passar dx para o outro lado", a integral é calculada corretamente? Afinal, como \frac{du}{dx} é uma notação, em tese, eu não poderia fazer isso. Não estou duvidando que funciona (porque dá certo!), mas quero saber o porquê. Obrigado.
Aliocha Karamazov
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 90
Registrado em: Qua Mar 16, 2011 17:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Integral] Substituição

Mensagempor LuizAquino » Sex Fev 24, 2012 11:28

Aliocha Karamazov escreveu:Mas, se a derivada de u em relação a x pode ser escrita como \frac{du}{dx}=2x, é só uma questão de notação. Por que, ao "passar dx para o outro lado", a integral é calculada corretamente? Afinal, como \frac{du}{dx} é uma notação, em tese, eu não poderia fazer isso. Não estou duvidando que funciona (porque dá certo!), mas quero saber o porquê.


Como você mesmo disse, a notação \frac{du}{dx} (que é a notação de Leibniz) representa a derivada de u(x). Isto é, representa u'(x).

Usando a definição de derivada, sabemos que:

u^\prime(x) = \lim_{y \to x} \frac{u(y)-u(x)}{y-x}

Fazendo a comparação (bem informal) desse limite com a notação de Leibniz, é como se fosse "definido" que:

du = \lim_{y \to x} u(y)-u(x)

dx = \lim_{y \to x} y - x

Com essa "definição", temos que u^\prime(x) e \frac{du}{dx} representam o cálculo de um mesmo limite.

Voltando agora para a equação \frac{du}{dx}=2x , aplicando a definição de derivada é como se tivéssemos:

\lim_{y \to x} \frac{u(y) - u(x)}{y - x} = 2x

Ignorando por um momento o fato de que \lim_{y\to x} y - x = 0 , temos que:

\lim_{y \to x} u(y) - u(x) = 2x\lim_{y\to x} y - x

du = 2x\,dx

Fazendo uma abstração (bem informal), esse resultado poderia ser obtido diretamente "passando o dx para o outro lado" na equação original.

Essa é mais ou menos a ideia por trás dessa operação que fazemos.

Mas note que tudo que escrevi foi informal.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Integral] Substituição

Mensagempor MarceloFantini » Sex Fev 24, 2012 12:07

A outra explicação, que ainda não sei detalhar, é entender dx como uma forma diferencial, dando um sentido então a isto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 37 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D