• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demostração da Regra do Trapézio

Demostração da Regra do Trapézio

Mensagempor ARCS » Sex Fev 10, 2012 19:12

Estou estudando as demonstrações dos métodos de integração numérica, um destes métodos é a Regra do Trapézio (RT). A demostração da RT pode ser feita usando o polinômio de Newton ou de Lagrange (os mesmos usados para interpolação). O problema é que eu não entendi a seguinte passagem ( o cálculo de um simples integral) :

\int_{a}^{b} f[a,b] (x-a) dx = f[a,b] \left[ \frac{(x-a)^2}{2}\right]_{a}^{b} (1)

isso não seria \int_{a}^{b} f[a,b] (x-a) dx = f[a,b] \left[ \frac{x^2}{2}-ax\right]_{a}^{b} (2)

Usando (1) chega-se a fórmula correta.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Demostração da Regra do Trapézio

Mensagempor LuizAquino » Sáb Fev 11, 2012 11:34

ARCS escreveu:\int_{a}^{b} f[a,b] (x-a) \, dx = f[a,b] \left[ \frac{(x-a)^2}{2}\right]_{a}^{b} (1)

isso não seria \int_{a}^{b} f[a,b] (x-a) \, dx = f[a,b] \left[ \frac{x^2}{2}-ax\right]_{a}^{b} (2)


Tanto faz.

Usando a substituição u = x - a e du = dx, temos que:

\int x -a \, dx = \int u \, du = \frac{u^2}{2} + c = \frac{(x-a)^2}{2} + c

Podemos ainda resolver a integral de outra forma:

\int  x-a \,dx = \int x \, dx - \int a \,dx = \frac{x^2}{2} - ax + c

Ambas as primitivas são corretas. Além disso, note que:

\int_a^b x -a \, dx = \left[\frac{(x-a)^2}{2}\right]_a^b = \frac{(b-a)^2}{2}

\int_a^b x - a \, dx = \left[\frac{x^2}{2} - ax\right]_a^b = \frac{b^2}{2} - ab - \frac{a^2}{2} + a^2 = \frac{b^2 -2ab + a^2}{2} = \frac{(b-a)^2}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}