• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Profeta » Qui Jan 26, 2012 22:20

Olá preciso de ajuda na correção

\lim_{\ x\to4}\frac{3-x}{x^3-2x-8} \Rightarrow \lim_{\ x\to4}\frac{3-x}{{(x-4)}{(x+2)}}={-\infty}  ou \lim_{\ x\to4^{-}}\frac{3-x}{{(x-4)}{(x+2)}}={-\infty}
Profeta
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jan 26, 2012 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: cursando

Re: Limites

Mensagempor ant_dii » Sex Jan 27, 2012 02:17

Profeta escreveu:\lim_{\ x\to4}\frac{3-x}{x^3-2x-8}

Esta correto, desde que o que você esta procurando seja o

\lim_{x \to 4}\frac{3-x}{x^2-2x-8}

Logo, pode-se ter

\lim_{x \to 4}\frac{3-x}{x^2-2x-8} \Rightarrow \lim_{x \to4}\frac{3-x}{(x-4)(x+2)}

que pela direita da
\lim_{x \to 4^+}\frac{3-x}{(x-4)(x+2)}=-\infty

e pela esquerda da
\lim_{x \to 4^-}\frac{3-x}{(x-4)(x+2)}=\infty

Indicando que \lim_{ x \to 4}\frac{3-x}{x^2-2x-8} não existe quando x \to 4.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Limites

Mensagempor fraol » Sáb Jan 28, 2012 10:53

Para não pairar dúvidas num futuro incerto, se a expressão original estiver correta, isto é, for como foi "profetizada":

\lim_{x \to 4}\frac{3-x}{x^3-2x-8} ,

então o limite existe e é finito.

Já no caso do expoente de maior grau no denominador ser 2 então vale, ipsis literis, o que ant_dii colocou.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limites

Mensagempor Profeta » Seg Jan 30, 2012 10:55

Obrigado pela atenção a expre correta é com x^2
Profeta
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Jan 26, 2012 14:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.