• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] volume por integral 2

[calculo] volume por integral 2

Mensagempor beel » Dom Nov 27, 2011 20:54

Considere a regiao delimitada pelo grafico da função F(x)=\sqrt[]{c^2 -x^2}, o eixo Ox e as retas x=-c e x=c, onde c maior que 0.O volume do solido obtido pela rotação em torno do eixo Ox é.
Eu fiz assim,
\int_{-c}^{c}\Pi(\sqrt[]{c^2 -x^2})^2 dx
ficou:
\Pi(\frac{c^3}{3} - \frac{x^3}{3}), aplicados de -c até c
fiquei muito em duvida em como fazer dai em diante
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] volume por integral 2

Mensagempor LuizAquino » Seg Nov 28, 2011 16:36

beel escreveu:Considere a regiao delimitada pelo grafico da função F(x)=[tex]\sqrt[]{c^2 -x^2}[/tex], o eixo Ox e as retas x=-c e x=c, onde c maior que 0.O volume do solido obtido pela rotação em torno do eixo Ox é.
Eu fiz assim,
\int_{-c}^{c}\Pi(\sqrt[]{c^2 -x^2})^2 dx
ficou:
\Pi(\frac{c^3}{3} - \frac{x^3}{3}), aplicados de -c até c
fiquei muito em duvida em como fazer dai em diante


Para conferir a sua resolução, siga os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate pi*(sqrt(c^2 - x^2))^2 dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] volume por integral 2

Mensagempor beel » Dom Dez 04, 2011 21:14

a integral é definida... o enunciado fala que a função é delimitada pelas retas x=c e x=-c...fiz uma substituição trigonometrica e cai nisso \Pi\int_{-c}^{c} c^2 - (c.sen\theta)^2c.cos\thetad\theta, mas nao to conseguindo achar uma primitiva...fuuui naquele site mas nao achei nenhuma resultado
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] volume por integral 2

Mensagempor LuizAquino » Seg Dez 05, 2011 11:02

beel escreveu:a integral é definida... o enunciado fala que a função é delimitada pelas retas x=c e x=-c...fiz uma substituição trigonometrica e cai nisso \Pi\int_{-c}^{c} c^2 - (c.sen\theta)^2c.cos\theta d\theta, mas nao to conseguindo achar uma primitiva...fuuui naquele site mas nao achei nenhuma resultado


Utilizando o procedimento indicado acima, você irá obter o passo a passo do cálculo da integral indefinida \int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx . Ou seja, você poderá verificar o passo a passo de como obter a primitiva de \pi\left(\sqrt{c^2 - x^2}\right)^2 .

Note que não é necessário utilizar substituição trigonométrica, pois para x\in [-c,\, c] temos que c^2 - x^2 \geq 0 , o que significa que podemos escrever:

\int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx = \int \pi\left(c^2 - x^2\right)\,dx

Eis a resposta final que será apresentada na página indicada no procedimento:

Indefinite integrals:

\int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx = \pi c^2 x - \frac{\pi x^3}{3} + \textrm{constant}


Agora tudo que você precisa fazer é aplicar o Teorema Fundamental do Cálculo:

\int_{-c}^{c} \pi\left(\sqrt{c^2 - x^2}\right)^2 dx = \left[\pi c^2 x - \frac{\pi x^3}{3}\right]_{-c}^c

=\left[\pi c^2 \cdot c - \frac{\pi \cdot c^3}{3}\right] - \left[\pi c^2\cdot (-c) - \frac{\pi \cdot (-c)^3}{3}\right]

=\left[\pi c^3 - \frac{\pi c^3}{3}\right] - \left[-\pi c^3 + \frac{\pi c^3}{3}\right]

= \frac{4\pi c^3}{3}

Por fim, você pode conferir o seu resultado digitando no campo de entrada da página indicada:

Código: Selecionar todos
integrate pi*(sqrt(c^2 - x^2))^2 dx x=-c..c
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}