• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calculo] volume por integral 2

[calculo] volume por integral 2

Mensagempor beel » Dom Nov 27, 2011 20:54

Considere a regiao delimitada pelo grafico da função F(x)=\sqrt[]{c^2 -x^2}, o eixo Ox e as retas x=-c e x=c, onde c maior que 0.O volume do solido obtido pela rotação em torno do eixo Ox é.
Eu fiz assim,
\int_{-c}^{c}\Pi(\sqrt[]{c^2 -x^2})^2 dx
ficou:
\Pi(\frac{c^3}{3} - \frac{x^3}{3}), aplicados de -c até c
fiquei muito em duvida em como fazer dai em diante
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] volume por integral 2

Mensagempor LuizAquino » Seg Nov 28, 2011 16:36

beel escreveu:Considere a regiao delimitada pelo grafico da função F(x)=[tex]\sqrt[]{c^2 -x^2}[/tex], o eixo Ox e as retas x=-c e x=c, onde c maior que 0.O volume do solido obtido pela rotação em torno do eixo Ox é.
Eu fiz assim,
\int_{-c}^{c}\Pi(\sqrt[]{c^2 -x^2})^2 dx
ficou:
\Pi(\frac{c^3}{3} - \frac{x^3}{3}), aplicados de -c até c
fiquei muito em duvida em como fazer dai em diante


Para conferir a sua resolução, siga os procedimentos abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate pi*(sqrt(c^2 - x^2))^2 dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [calculo] volume por integral 2

Mensagempor beel » Dom Dez 04, 2011 21:14

a integral é definida... o enunciado fala que a função é delimitada pelas retas x=c e x=-c...fiz uma substituição trigonometrica e cai nisso \Pi\int_{-c}^{c} c^2 - (c.sen\theta)^2c.cos\thetad\theta, mas nao to conseguindo achar uma primitiva...fuuui naquele site mas nao achei nenhuma resultado
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [calculo] volume por integral 2

Mensagempor LuizAquino » Seg Dez 05, 2011 11:02

beel escreveu:a integral é definida... o enunciado fala que a função é delimitada pelas retas x=c e x=-c...fiz uma substituição trigonometrica e cai nisso \Pi\int_{-c}^{c} c^2 - (c.sen\theta)^2c.cos\theta d\theta, mas nao to conseguindo achar uma primitiva...fuuui naquele site mas nao achei nenhuma resultado


Utilizando o procedimento indicado acima, você irá obter o passo a passo do cálculo da integral indefinida \int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx . Ou seja, você poderá verificar o passo a passo de como obter a primitiva de \pi\left(\sqrt{c^2 - x^2}\right)^2 .

Note que não é necessário utilizar substituição trigonométrica, pois para x\in [-c,\, c] temos que c^2 - x^2 \geq 0 , o que significa que podemos escrever:

\int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx = \int \pi\left(c^2 - x^2\right)\,dx

Eis a resposta final que será apresentada na página indicada no procedimento:

Indefinite integrals:

\int \pi\left(\sqrt{c^2 - x^2}\right)^2\,dx = \pi c^2 x - \frac{\pi x^3}{3} + \textrm{constant}


Agora tudo que você precisa fazer é aplicar o Teorema Fundamental do Cálculo:

\int_{-c}^{c} \pi\left(\sqrt{c^2 - x^2}\right)^2 dx = \left[\pi c^2 x - \frac{\pi x^3}{3}\right]_{-c}^c

=\left[\pi c^2 \cdot c - \frac{\pi \cdot c^3}{3}\right] - \left[\pi c^2\cdot (-c) - \frac{\pi \cdot (-c)^3}{3}\right]

=\left[\pi c^3 - \frac{\pi c^3}{3}\right] - \left[-\pi c^3 + \frac{\pi c^3}{3}\right]

= \frac{4\pi c^3}{3}

Por fim, você pode conferir o seu resultado digitando no campo de entrada da página indicada:

Código: Selecionar todos
integrate pi*(sqrt(c^2 - x^2))^2 dx x=-c..c
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D