• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DERIVADA] Reta tangente e Reta perpendicular

[DERIVADA] Reta tangente e Reta perpendicular

Mensagempor antonelli2006 » Ter Nov 22, 2011 11:21

Olá amigos,

Estou com a seguinte questão sem resposta:

Em que pontos a reta tangente à curva y^2=2x^3 é perpendicular à reta 4x-3y+1=0?

Fiz a derivada de y^2=2x^3, igualando y=\sqrt[]{2x^3}, e deu \frac{3x^2}{\sqrt[]{2x^3}}.
Já a derivada da segunda equação deu \frac{4}{3}.

Multiplicando uma pela outra e igualando à -1:

\frac{3x^2}{\sqrt[]{2x^3}}.\frac{4}{3}=-1
\frac{4x^2}{\sqrt[]{2x^3}}=-1

Consegui o seguinte resultado:

x=-\frac{1}{8}

Porém não consigo achar o valor de y que satisfaça as duas equações.

Alguem ajuda?
antonelli2006
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Set 17, 2011 05:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [DERIVADA] Reta tangente e Reta perpendicular

Mensagempor LuizAquino » Ter Nov 22, 2011 14:28

antonelli2006 escreveu:Em que pontos a reta tangente à curva y^2=2x^3 é perpendicular à reta 4x-3y+1=0?


Derivando implicitamente a curva dada, temos que:

\left(y^2\right)^\prime=\left(2x^3\right)^\prime

2yy^\prime=6x^2

y^\prime=\frac{3x^2}{y}

Sabemos então que \frac{3x^2}{y} é o coeficiente angular da reta tangente a curva no ponto (x, y).

Já que 4/3 é o coeficiente angular da reta 4x-3y+1=0 , para que ela seja perpendicular a reta tangente a curva, deve ocorrer:

\frac{3x^2}{y}\cdot \frac{4}{3} = -1

y = -4x^2

Falta agora determinar os pontos (x, y) sobre a curva y^2=2x^3 tais que y = -4x^2. Isto é, basta resolver o sistema:

\begin{cases}
y^2 = 2x^3 \\
y = -4x^2
\end{cases}

Resolvendo esse sistema obtemos x = \frac{1}{8} e y = -\frac{1}{16} (aqui desconsideramos a solução x=0 e y=0).

Portanto, apenas no ponto \left(\frac{1}{8},\, -\frac{1}{16}\right) a reta tangente a curva y^2=2x^3 é perpendicular a reta 4x-3y+1=0 .

Observação

antonelli2006 escreveu:Fiz a derivada de y^2=2x^3, igualando y=\sqrt{2x^3}, e deu \frac{3x^2}{\sqrt{2x^3}}.


Aqui você esqueceu que:

y^2=2x^3 \Rightarrow y=\pm \sqrt{2x^3}

Portanto, temos que:

y^\prime= \begin{cases}\frac{3x^2}{\sqrt{2x^3}},\,\textrm{se } y > 0 \\ -\frac{3x^2}{\sqrt{2x^3}},\,\textrm{se } y < 0 \end{cases}

Note que não há derivada em y=0. Fica mais fácil perceber isso fazendo uma ilustração do gráfico dessa curva.

Para continuar a resolução a partir daqui, você teria que analisar dois casos:

(i) \frac{3x^2}{\sqrt{2x^3}}\cdot \frac{4}{3} = -1 ;

(ii) \left(-\frac{3x^2}{\sqrt{2x^3}}\right)\cdot \frac{4}{3} = -1 ;

Note que (i) não tem solução real, enquanto que (ii) tem solução x = 1/8 (e portanto y = -1/16).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 94 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?