por beel » Dom Nov 20, 2011 22:33
tomei como o "u" a raiz de t,da seguinte integrada
![\int_{1}^{ln5}(e\sqrt[]{t}/\sqrt[]{t})dt \int_{1}^{ln5}(e\sqrt[]{t}/\sqrt[]{t})dt](/latexrender/pictures/c84d2acc7402c7db0141ce7ade318f5c.png)
mas to em duvida se preciso substituir nos extremos dela tambem..meu resultado deu
1/2(5/2 - e/2)
-
beel
- Colaborador Voluntário

-
- Mensagens: 172
- Registrado em: Sex Ago 26, 2011 13:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por LuizAquino » Seg Nov 21, 2011 10:10
beel escreveu:tomei como o "u" a raiz de t,da seguinte integrada

mas to em duvida se preciso substituir nos extremos dela tambem..meu resultado deu
1/2(5/2 - e/2)
Fazendo a substituição

, temos que:
(i)

;
(ii) se t = 1, então u = 1 ;
(ii) se

, então

.
Sendo assim, obtemos que:
![\int_{1}^{\ln 5}\frac{e^\sqrt{t}}{\sqrt{t}}\,dt = \int_{1}^{\sqrt{\ln 5}}2e^u\,du = \left[2e^u\right]_1^{\sqrt{\ln 5}} = 2\left(e^{\sqrt{\ln 5}} - e\right) \int_{1}^{\ln 5}\frac{e^\sqrt{t}}{\sqrt{t}}\,dt = \int_{1}^{\sqrt{\ln 5}}2e^u\,du = \left[2e^u\right]_1^{\sqrt{\ln 5}} = 2\left(e^{\sqrt{\ln 5}} - e\right)](/latexrender/pictures/e1907097a3dc8480edb7be8689fa140d.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integração por substituição
por manuoliveira » Seg Out 22, 2012 22:33
- 2 Respostas
- 1749 Exibições
- Última mensagem por manuoliveira

Ter Out 23, 2012 00:49
Cálculo: Limites, Derivadas e Integrais
-
- integração por substituição
por medeiro_aa » Seg Dez 07, 2015 18:35
- 2 Respostas
- 3261 Exibições
- Última mensagem por medeiro_aa

Qua Mar 02, 2016 11:44
Cálculo: Limites, Derivadas e Integrais
-
- MÉTODO DE INTEGRAÇÃO POR SUBSTITUIÇÃO
por HenriquePegorari » Dom Jul 25, 2010 17:26
- 3 Respostas
- 4498 Exibições
- Última mensagem por MarceloFantini

Ter Jul 27, 2010 12:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por substituição] Ajuda, por favor?
por Ronaldobb » Dom Dez 16, 2012 18:44
- 2 Respostas
- 2024 Exibições
- Última mensagem por Ronaldobb

Dom Dez 16, 2012 18:47
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por substituição] Ajuda, por favor?
por Ronaldobb » Dom Dez 16, 2012 21:26
- 1 Respostas
- 1539 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 21:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.