• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Gradiente e derivada direcional]

[Gradiente e derivada direcional]

Mensagempor dulifs » Seg Out 31, 2011 15:22

Olá...

estava fazendo alguns exemplos sobre este assunto e me deparei com o seguinte exercicio:

Determine a equação da reta tangente à elipse: 2x^2 + y= 3 e paralela a reta: 2x + y = 5

sei calcular a reta tangente, mas não sei como fazer para a reta ser ao mesmo tempo tangente e paralela

Muito obrigada.
dulifs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Out 31, 2011 15:14
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando

Re: [Gradiente e derivada direcional]

Mensagempor LuizAquino » Seg Out 31, 2011 16:53

dulifs escreveu:Determine a equação da reta tangente à elipse: 2x^2 + y= 3 e paralela a reta: 2x + y = 5


Primeiro, a equação da elipse deve ser algo como 2x^2 + y^2= 3 (e não 2x^2 + y = 3 como você escreveu) .

Dos conhecimentos de Geometria Analítica, sabemos que o vetor diretor da reta 2x+y = 5 é dado por \vec{d} = (1,\,-2) .

Sendo assim, como a reta procurada é paralela a essa, o seu vetor diretor também deve ser \vec{d} .

Dos conhecimentos de Cálculo, sabemos que \nabla f(x_0,\,y_0) é ortogonal a curva f(x,\,y) = c passando pelo ponto (x_0,\,y_0) .

Nesse contexto, no ponto (k,\,m) onde essa reta é tangente a elipse, deve ocorrer \nabla f(k,\,m) \perp \vec{d} (ou seja, esses vetores são ortogonais). Sendo assim, devemos ter \nabla f(k,\,m) \cdot \vec{d} = 0 .

Fazendo f(x,\,y) = 2x^2 + y^2, temos que:

\nabla f(k,\,m) \cdot \vec{d} = 0

(4k,\,2m) \cdot (1,\,-2) = 0

4k-4m = 0

k = m

Substituindo essa informação na equação da elipse, temos que:

2k^2 + k^2 = 3

3k^2 = 3

k = \pm 1

Portanto, há duas retas tangentes. Uma passando por (1, 1) e outra passando por (-1, -1).

A equação vetorial dessas retas será:

r_1 \,:\, X = (1,\,1) + t(1,\,-2)

r_2 \,:\, X = (-1,\,-1) + t(1,\,-2)

Já a equação cartesiana dessas retas será:

r_1 \,:\, 2x + y = 3

r_2 \,:\, 2x + y = -3
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Gradiente e derivada direcional]

Mensagempor dulifs » Seg Out 31, 2011 18:14

Olá Luiz,

Desculpe, realmente anotei errado a equação.
Mas muito obrigada pela explicação, está ótima...

beijos.
dulifs
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Out 31, 2011 15:14
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 119 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}