• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de Variação

Taxa de Variação

Mensagempor Pollyanna Moraes » Sáb Out 22, 2011 17:37

Oiie, essa questão é do Leithold terceira edição, como ele só tem as respostas das questoes impares e a questao que segue abaixo é uma questao par não tenho como saber se está correto. Por favor, se conseguirem resolver, agradeço :D A minha resposta pra letra A dá 1 m/s, já a letra B não tenho ideia de como faze-la. Fiz a letra A por semelhança de triangulos, está certo?

*Uma lâmpada está pendurada a 4,5 m de um piso horizontal. Se um homem com 1,80 m de altura caminha afastando-se da luz, com uma velocidade de 1,5 m/s, (A) qual a velocidade de crescimento da sombra? e (B) com que velocidade a ponta da sombra do homem está se movendo?
Pollyanna Moraes
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 15, 2011 12:50
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Taxa de Variação

Mensagempor LuizAquino » Dom Out 23, 2011 10:15

Uma lâmpada está pendurada a 4,5 m de um piso horizontal. Se um homem com 1,80 m de altura caminha afastando-se da luz, com uma velocidade de 1,5 m/s, (A) qual a velocidade de crescimento da sombra? e (B) com que velocidade a ponta da sombra do homem está se movendo?


A figura abaixo ilustra o exercício.

exercício-taxa-de-variação.png
exercício-taxa-de-variação.png (4.94 KiB) Exibido 7254 vezes


Por semelhança de triângulos, temos que:

\frac{s}{x+s} = \frac{1,8}{4,5} \Rightarrow s= \frac{2}{3}x

A sombra s está em função da distância x, que por sua vez está em função do tempo. Sendo assim, aplicando a Regra da Cadeia:

\frac{ds}{dt} = \frac{ds}{dx}\frac{dx}{dt} \Rightarrow \frac{ds}{dt} = \frac{2}{3} \cdot 1,5 \Rightarrow \frac{ds}{dt} = 1

Ou seja, a velocidade de crescimento da sombra é 1 m/s.

Voltando a figura que ilustra o exercício, p representa a distância percorrida pela "ponta da sombra". Podemos então escrever que:

p = x + s \Rightarrow p = \frac{5}{3}x .

O valor de p está em função de x, que por sua vez está em função do tempo. Sendo assim, aplicando a Regra da Cadeia:

\frac{dp}{dt} = \frac{dp}{dx}\frac{dx}{dt} \Rightarrow \frac{dp}{dt} = \frac{5}{3} \cdot 1,5 \Rightarrow \frac{dp}{dt} = \frac{5}{2}

Ou seja, a velocidade com que a ponta da sombra do homem está se movendo é \frac{5}{2} m/s.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 37 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D