• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Continuidade] Problema de Valor Intermediário

[Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 00:18

Se a e b são números positivos, demonstre que a equação a seguir tem pelo menos uma solução no intervalo (-1, 1).

\frac{a}{{x}^{3}+2{x}^{2}-1}+\frac{b}{{x}^{3}+x-2}=0

Cálculo 6 ed., James Stewart, p.117, q.62.


Já perdi horas com isso, e não há resposta em parte alguma. Como chutando valores de x no intervalo (-1, 1), geralmente se obtém parcelas negativas e, portanto, resposta negativa, minha estratégia foi tentar mostrar que ambas as parcelas são positivas num dado sub-intervalo dentro de (-1,1). Se eu conseguisse isto, mostraria que a função da esquerda (a soma à esquerda da igualdade, digo) varia entre valores negativos e positivos e, portanto, passa por zero - pois é uma função contínua e definida dentro do intervalo pedido.

No entanto fracassei.

Como a e b são positivos, cada parcela será positiva quando o denominador for positivo.

x³ + 2x² - 1 é positivo dentro do intervalo (-1,1) para 0.618 < x < 1.

* Esse 0.618 é aproximação de \frac{\sqrt[]{5}-1}{2}

Mas x³ + x - 2 nunca é positivo dentro intervalo! Só para x > 1.

Então, aparentemente, eu precisaria mostrar que, nos casos em que a 1ª parcela é positiva (em 0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva como preciso, rs. Acho que isso é demais pra mim, hehehe.

Imagino que a real solução seja mais simples, com outra estratégia.

Se alguém puder ajudar, ficaria grato.

Obrigado pela atenção.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor MarceloFantini » Seg Out 03, 2011 01:07

Como o intervalo é aberto em -1 e 1, podemos multiplicar tudo por (x^3 +2x^2 -1)(x^3 +x -2) e obteremos a(x^3 +x -2) +b(x^3 +2x^2 -1) =0. Agora considere esta relação no intervalo [-1,1], ou seja, fechado em -1 e 1. Quando x=-1, nós temos a(-1+1-2)+b(0) = -2a < 0. Tomando x=1, teremos a(0)+b(1+2-1)=2b > 0, logo pelo Teorema de Bolzano a equação tem pelo menos uma raíz real no intervalo (-1,1).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 01:37

Sensacional, Marcelo! :-D Muito obrigado.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Continuidade] Problema de Valor Intermediário

Mensagempor Imscatman » Seg Out 03, 2011 02:12

O tópico está resolvido, mas seria desperdício eu não perguntar o seguinte: minha linha de raciocínio tem alguma saída simples? Isto é, tem algum jeito praticável de, como eu disse

mostrar que, nos casos em que a 1ª parcela é positiva (em 0.618 < x < 1), seu valor absoluto é às vezes maior que o da 2ª parcela negativa - o que faria a função ser positiva
?

Obviamente não é urgente, rs. Mas se alguém por acaso souber, enriqueceria o tópico.
Eu na verdade nem mesmo tentei. Estava cansado, hehe.
Avatar do usuário
Imscatman
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mar 17, 2011 17:52
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?