• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Derivadas parciais

[Derivada] Derivadas parciais

Mensagempor -civil- » Qui Set 29, 2011 15:28

Calcule as derivadas parciais de primeira ordem e explicite o domínio de cada função (descreva a propriedade algébrica que o define) e desenhe-o.

k = \frac{xcosz}{sen(x^2 + zy)}


Eu não entendi o que o exercício quis dizer com "descreva a propriedade algébrica que o define". Seria dizer que, por exemplo, para uma a função f(x,y) =\frac{x}{x+y}, x + y \neq 0 ?

Voltando à função, para esboçar o domínio, eu preciso que sen(x^2 + zy) \neq 0 e deveria desenhar no gráfico sen(x^2 + zy) = 0 para mostrar que aquilo não pertence ao domínio. Mas não faço ideia de como desenhar.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Derivada] Derivadas parciais

Mensagempor LuizAquino » Sex Set 30, 2011 17:57

Calcule as derivadas parciais de primeira ordem e explicite o domínio de cada função (descreva a propriedade algébrica que o define) e desenhe-o.

k = \frac{xcosz}{sen(x^2 + zy)}

Eu não entendi o que o exercício quis dizer com "descreva a propriedade algébrica que o define". Seria dizer que, por exemplo, para uma a função f(x,y) =\frac{x}{x+y}, x + y \neq 0.


É por aí. Para a função no seu exemplo, a propriedade algébrica que define o seu domínio seria algo do tipo: x e y números reais tais que x + y \neq 0 .

Ainda nesse exemplo, o esboço desse domínio seria todo o plano cartesiano retirando-se a reta y = -x .

-civil- escreveu:Voltando à função, para esboçar o domínio, eu preciso que sen(x^2 + zy) \neq 0 e deveria desenhar no gráfico sen(x^2 + zy) = 0 para mostrar que aquilo não pertence ao domínio. Mas não faço ideia de como desenhar.


Bem, primeiro note que o exercício pede que seja explicitado o domínio das funções derivadas parciais de primeira ordem. Acontece que nesse caso esse domínio será o mesmo para todas essas funções.

No caso do exercício, temos que a função k depende das variáveis x, y e z. Você precisa então calcular as derivadas parciais de primeira ordem em relação a cada uma delas.

Por exemplo, calculando a derivada parcial de k em relação a x, temos que:

k_x = \frac{\cos z \,\textrm{sen}\,\left(x^2 + zy\right) -2x^2\cos z \cos \left(x^2 + zy\right)}{\left[\textrm{sen}\,\left(x^2 + zy\right)\right]^2}

A propriedade algébrica que define o domínio de k_x seria algo como: x, y e z números reais tais que \textrm{sen}\,\left(x^2 + zy\right) \neq 0 .

Dos conhecimentos de trigonometria, sabemos que a função seno é igual a zero nos ângulos m\pi, com m\in\mathbb{Z} .

Desse modo, podemos reescrever a propriedade algébrica anterior como sendo algo do tipo: x, y e z números reais tais que x^2 + zy \neq m\pi , com m\in\mathbb{Z}.

Um esboço desse domínio seria todo o espaço \mathbb{R}^{3} retirando-se as superfícies z = \frac{-x^2 + m\pi}{y} (quando y \neq 0) e retirando-se as retas x = \pm \sqrt{m\pi} que estão sobre o plano xOz (quando y = 0 e m \geq 0).

Para fazer o esboço das superfícies, note que as curvas de nível de cada um deles são parábolas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 42 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D