• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integrais

integrais

Mensagempor vinicius cruz » Dom Set 25, 2011 22:09

olá
boa noite

não consigo resolver essas integrais:

?dx/(e^x+e^-x)

?sen(3x)dx/(³?(cos3x)^4)

?dx/(?x*(?x+1))

?ln(x)^3dx/(x)

?x²cos²(x)dx

parece ser trabalhoso, mas por favor quem souber responda a este topico.
vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: integrais

Mensagempor LuizAquino » Seg Set 26, 2011 10:44

vinicius cruz escreveu:\int \frac{1}{e^x + e^{-x}}\, dx


Note que:

\int \frac{1}{e^x + e^{-x}}\, dx = \int \frac{1}{e^x + \frac{1}{e^{x}}}\, dx = \int \frac{e^x}{\left(e^{x}\right)^2 + 1}\, dx

Agora use a substituição u = e^x e du = e^x\,dx .

vinicius cruz escreveu:\int \frac{\textrm{sen}\, 3x}{\sqrt[3]{(\cos 3x)^4}} \, dx


Use a substituição u = \cos 3x e du = -3\,\textrm{sen}\, 3x\,dx .

vinicius cruz escreveu:\int \frac{1}{\sqrt{x}(\sqrt{x} + 1)}\,dx


Use a substituição u = \sqrt{x} e du = \frac{1}{2\sqrt{x}} \,dx .

vinicius cruz escreveu:\int \frac{\ln (x)^3}{x} \,dx

O que você escreveu é o mesmo que:
\int \frac{\ln (x)^3}{x} \,dx = \int \frac{3\ln x}{x}\,dx

Agora use a substituição u = \ln x e du = \frac{1}{x}\,dx .

Vale destacar que o exercício seria outro se tivéssemos:

\int \frac{(\ln x)^3}{x} \,dx ,

que é o mesmo que,

\int \frac{\ln^3 x}{x} \,dx .

Entretanto, ainda assim usaríamos a mesma substituição: u = \ln x e du = \frac{1}{x}\,dx .

Vale ainda destacar mais outro detalhe. Em sistemas de computação, tipicamente a expressão ln(x)^3 seria interpretada como sendo o mesmo que (ln(x))^3. Entretanto, fora do contexto desses sistemas, essas duas expressões não são a mesma coisa. No contexto da Matemática, a expressão ln(x)^3, que pode ser escrita como \ln(x)^3, é tal que \ln(x)^3 = 3 \ln x . Já a expressão (ln(x))^3, que pode ser escrita como (\ln (x))^3, é tal que (\ln (x))^3 = \ln^3 (x) .

vinicius cruz escreveu:\int x^2 \cos^2 x \, dx


Comece aplicando o método de integração por partes, fazendo u = x^2 e dv = \cos^2 x \, dx .

Depois dessa primeira aplicação, você deve perceber que ainda será necessário usar novamente integração por partes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: integrais

Mensagempor vinicius cruz » Seg Set 26, 2011 23:05

olá
obrigado pela ajuda

mas na primeira questão eu não entendi como o "e^x" foi parar em cima ??


e na segunda questão quais os passos seguintes, pois eu parei em:
2??x/[u*(?x+1)]


as demais questões eu entendi ;)
vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: integrais

Mensagempor LuizAquino » Seg Set 26, 2011 23:32

vinicius cruz escreveu:mas na primeira questão eu não entendi como o "e^x" foi parar em cima ??

Note que se a é um número diferente de zero, então a + \frac{1}{a} = \frac{a^2 + 1}{a} .

Agora tente obter quanto vale \frac{1}{a + \frac{1}{a}} .

vinicius cruz escreveu:e na segunda questão quais os passos seguintes, pois eu parei em:
2??x/[u*(?x+1)]

Você deve estar se referindo a terceira questão.

Usando a substituição indicada na mensagem anterior, temos que:

\int \frac{1}{\sqrt{x}(\sqrt{x} + 1)}\,dx = \int \frac{2}{u + 1}\,du
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: integrais

Mensagempor vinicius cruz » Ter Set 27, 2011 01:06

obrogado pela ajuda ;)
vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59