• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Derivada trigonométrica

[Cálculo] Derivada trigonométrica

Mensagempor ericamila2 » Sáb Set 24, 2011 22:39

como a derivada de f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}} tem como resposta o sec(x)?
Não consigo chegar nesse resultado.
Esta pergunta estava na prova mas ainda não consegui entender como chegar ao resultado.
ericamila2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 24, 2011 22:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de sistemas
Andamento: cursando

Re: [Cálculo] Derivada trigonométrica

Mensagempor LuizAquino » Sáb Set 24, 2011 23:14

ericamila2 escreveu:como a derivada de f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}} tem como resposta o sec(x)?

Note que:

\ln\sqrt{\left|\frac{1+\,\textrm{sen}\,x}{1-\,\textrm{sen}\,x}\right|} = \ln\sqrt{\left|\frac{(1+\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}{(1-\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}\right|} = \ln \left|\frac{1+\,\textrm{sen}\,x}{\cos x}\right| = \ln |\sec x + \,\textrm{tg}\,x|

Agora, derive \ln |\sec x + \,\textrm{tg}\,x| e você obtém a resposta. Caso fique com dúvida nessa derivada, então vide o tópico:

Re: Calcular Derivada ln(secx+tgx)
viewtopic.php?f=120&t=5853#p20310
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.