por ericamila2 » Sáb Set 24, 2011 22:39
como a derivada de
![f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}} f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}}](/latexrender/pictures/e9a09b7c5e9d51ba35e3d800bcfea8c8.png)
tem como resposta o sec(x)?
Não consigo chegar nesse resultado.
Esta pergunta estava na prova mas ainda não consegui entender como chegar ao resultado.
-
ericamila2
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 24, 2011 22:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de sistemas
- Andamento: cursando
por LuizAquino » Sáb Set 24, 2011 23:14
ericamila2 escreveu:como a derivada de
![f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}} f'(x)=ln \sqrt[2]{\frac{1+senx}{1-senx}}](/latexrender/pictures/e9a09b7c5e9d51ba35e3d800bcfea8c8.png)
tem como resposta o sec(x)?
Note que:

Agora, derive

e você obtém a resposta. Caso fique com dúvida nessa derivada, então vide o tópico:
Re: Calcular Derivada ln(secx+tgx)viewtopic.php?f=120&t=5853#p20310
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADA] DESENVOLVER A DERIVADA TRIGONOMÉTRICA
por Matheusgdp » Ter Nov 03, 2015 17:34
- 5 Respostas
- 3651 Exibições
- Última mensagem por Cleyson007

Sex Nov 06, 2015 08:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivada trigonometrica
por mayara359 » Ter Jun 23, 2015 16:25
- 1 Respostas
- 2513 Exibições
- Última mensagem por Cleyson007

Qua Jun 24, 2015 17:33
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de Função Trigonométrica.
por Sobreira » Dom Dez 02, 2012 14:17
- 2 Respostas
- 3540 Exibições
- Última mensagem por MarceloFantini

Seg Dez 03, 2012 00:08
Cálculo: Limites, Derivadas e Integrais
-
- [AJUDA] Duvida de derivada trigonométrica
por Erick Johnny » Ter Mai 29, 2012 11:01
- 3 Respostas
- 2488 Exibições
- Última mensagem por LuizAquino

Ter Mai 29, 2012 13:37
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de uma função trigonométrica [Resposta impossível]
por Matheus Lacombe O » Dom Dez 02, 2012 13:57
- 3 Respostas
- 3117 Exibições
- Última mensagem por DanielFerreira

Dom Dez 02, 2012 17:51
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.