• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] cosseno

[LIMITE] cosseno

Mensagempor beel » Ter Set 06, 2011 13:10

lim [ 2 + (cos x)/x ]
quando x tende ao infinito


Eu teria que transformar o cosseno em seno pra aplicar o limite fundamental trigonométrico?
E se for, como se faz isso?



Obs: o editor de formulas nao estava abrindo, desculpa escrever desse jeito
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] cosseno

Mensagempor Neperiano » Ter Set 06, 2011 14:45

Ola

Sen = 1/cosseno

Então Cosseno = 1/seno

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] cosseno

Mensagempor beel » Ter Set 06, 2011 15:23

Nao seria, cos = 1 - sen?

Enfim, nao entendi de qualquer forma, o que eu faço?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] cosseno

Mensagempor MarceloFantini » Ter Set 06, 2011 18:13

A relação fundamental é \textrm{sen}^2 x + \cos^2 x = 1. Esclareça, por favor:

\lim_{x \to \infty} \frac{2 + \cos x}{x} ou \lim_{x \to \infty} 2 + \frac{\cos x}{x}?

Neperiano, novamente, por favor tome cuidado pois sua afirmação não faz sentido e está equivocada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE] cosseno

Mensagempor beel » Qui Set 08, 2011 14:53

A segunda opção( x dividindo apenas o cos(x) )
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] cosseno

Mensagempor MarceloFantini » Qui Set 08, 2011 18:48

Note que | \cos x | \leq 1 \implies \left\vert \frac{\cos x}{x} \right\vert \leq \left\vert \frac{1}{x} \right\vert, cujo limite é zero, portanto:

\lim_{x \to \infty} \left( 2 + \frac{\cos x}{x} \right) = 2
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [LIMITE] cosseno

Mensagempor LuizAquino » Qui Set 08, 2011 18:54

isanobile,

Você já estudou o Teorema do Sanduíche (ou Teorema do Confronto)?

Dos conhecimentos de trigonometria, sabemos que:

-1 \leq \cos x \leq 1

Considerando x não nulo e positivo, podemos multiplicar toda essa inequação por 1/x e ela não se altera:

-\frac{1}{x} \leq \frac{\cos x}{x} \leq \frac{1}{x}

Veja que \lim_{x\to \infty} -\frac{1}{x} = 0 e \lim_{x\to \infty} \frac{1}{x} = 0 . Portanto, pelo Teorema do Sanduíche, segue que \lim_{x\to \infty} \frac{\cos x}{x} = 0 .

Isso significa que \lim_{x\to \infty} 2 + \frac{\cos x}{x} = 2 .

Observação
O colega Fantini enviou sua mensagem às 18:48, enquanto eu ainda editava a minha mensagem (que foi enviada às 18:54). Portanto, desculpem a duplicidade na resposta.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] cosseno

Mensagempor beel » Sex Set 09, 2011 13:16

Já estudei isso sim, consegui entender, obrigada pela explicação detalhada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}