• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada] Achar a derivada de uma função

[Derivada] Achar a derivada de uma função

Mensagempor caiofisico » Seg Set 05, 2011 20:18

pessoal gostaria de saber se estou no caminho ou se errei em algum dado momento

Ache a derivada de f(x)=x^2-3x

então fiz o seguinte...
\lim_{\Delta x \rightarrow 0}  \frac{f(x+\Delta x) - f(x)}{\Delta x}

\lim_{\Delta x \rightarrow 0}  \frac{(x^2-3x+\Delta x)-(x^2-3x)}{\Delta x}

\lim_{\Delta x \rightarrow 0}  \frac{(x^2-3x+\Delta x)-(x^2-3x)}{\Delta x}. \frac{(x^2+3x)}{(x^2+3x)}

bom resolvendo isso achei que 2/2= 1

achei estranho pois na copia que fiz de um caderno estava assim:
....... \lim_{\Delta x \rightarrow 0} \frac{\Delta x (2x+\Delta x-3)}{\Delta x}=2x -3


do modo que eu fiz esta errado? usei a formula errada? acredito que seja essa formula mesmo
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Derivada] Achar a derivada de uma função

Mensagempor LuizAquino » Seg Set 05, 2011 21:56

caiofisico escreveu:Ache a derivada de f(x)=x^2-3x

então fiz o seguinte...
\lim_{\Delta x \rightarrow 0}  \frac{f(x+\Delta x) - f(x)}{\Delta x}

\lim_{\Delta x \rightarrow 0} \frac{(x^2-3x+\Delta x)-(x^2-3x)}{\Delta x}

Você errou no cálculo da função. Veja que:
\lim_{\Delta x \rightarrow 0}  \frac{f(x+\Delta x) - f(x)}{\Delta x} =\lim_{\Delta x \to 0} \frac{[\left(x+\Delta x\right)^2 - 3(x+\Delta x)]  - (x^2 - 3x)}{\Delta x}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada] Achar a derivada de uma função

Mensagempor caiofisico » Seg Set 05, 2011 22:09

opa já tinha conseguido :D
muito obrigado, entendi agora o porque de estar ao quadrado e o outro sendo multiplicado por 3, era simplesmente olhar a equação ^^, falta de atenção a minha, obrigado amigo
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Derivada] Achar a derivada de uma função

Mensagempor LuizAquino » Seg Set 05, 2011 22:57

caiofisico escreveu:muito obrigado, entendi agora o porque de estar ao quadrado e o outro sendo multiplicado por 3, era simplesmente olhar a equação ^^, falta de atenção a minha, obrigado amigo

Apenas lembrando: você precisou olhar para uma função e não para uma equação como você disse.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivada] Achar a derivada de uma função

Mensagempor caiofisico » Ter Set 06, 2011 19:44

^^ isso isso, ainda to acostumando com a linguagem :D
caiofisico
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Sáb Ago 20, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 47 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D