• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinar o ângulo formado pela reta tangente à uma curva.

determinar o ângulo formado pela reta tangente à uma curva.

Mensagempor theSinister » Dom Ago 14, 2011 17:45

vamos considerar a seguinte função : f(x)= {x}^{2}+2x+2 , e queremos encontrar a inclinação da reta tangente a curva no ponto (1,5), ou seja nada mais do q derivar a função , q ficaria f'(x)= 2x+2, dai substituímos "x "por "1" e encontramos a inclinação de "4". A partir daí fazemos a equação da reta q ficaria y= 4x+1, agora a duvida é: como encontrar o ângulo formado entre a reta e o eixo x? Eu sei q o valor desse ângulo é de 75,9 e a tangente dele é 4, porém não entendi como o meu professor encontrou o valor do angulo . help-me.
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: determinar o ângulo formado pela reta tangente à uma cur

Mensagempor LuizAquino » Seg Ago 15, 2011 16:57

Você precisa usar a função arco tangente, que é a inversa da função tangente.

Você tem que \textrm{tg}\,\alpha = 4 . Usando uma calculadora científica, obtemos que \alpha = \textrm{acrtg}\,4 \approx 75,96 .

Observação

1) É comum nas calculadoras científicas aparecer a notação \tan^{-1} para representar o arco tangente. Portanto, nessas calculadoras você deve digitar \tan^{-1} 4 .

2) Sem o uso de calculadora, teríamos que apelar para algum método numérico para calcular \textrm{acrtg}\,4 . Por exemplo, o Método de Newton. Vale lembrar que esses métodos numéricos são estudados na disciplina Cálculo Numérico.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59