• Anúncio Global
    Respostas
    Exibições
    Última mensagem

determinar o ângulo formado pela reta tangente à uma curva.

determinar o ângulo formado pela reta tangente à uma curva.

Mensagempor theSinister » Dom Ago 14, 2011 17:45

vamos considerar a seguinte função : f(x)= {x}^{2}+2x+2 , e queremos encontrar a inclinação da reta tangente a curva no ponto (1,5), ou seja nada mais do q derivar a função , q ficaria f'(x)= 2x+2, dai substituímos "x "por "1" e encontramos a inclinação de "4". A partir daí fazemos a equação da reta q ficaria y= 4x+1, agora a duvida é: como encontrar o ângulo formado entre a reta e o eixo x? Eu sei q o valor desse ângulo é de 75,9 e a tangente dele é 4, porém não entendi como o meu professor encontrou o valor do angulo . help-me.
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: determinar o ângulo formado pela reta tangente à uma cur

Mensagempor LuizAquino » Seg Ago 15, 2011 16:57

Você precisa usar a função arco tangente, que é a inversa da função tangente.

Você tem que \textrm{tg}\,\alpha = 4 . Usando uma calculadora científica, obtemos que \alpha = \textrm{acrtg}\,4 \approx 75,96 .

Observação

1) É comum nas calculadoras científicas aparecer a notação \tan^{-1} para representar o arco tangente. Portanto, nessas calculadoras você deve digitar \tan^{-1} 4 .

2) Sem o uso de calculadora, teríamos que apelar para algum método numérico para calcular \textrm{acrtg}\,4 . Por exemplo, o Método de Newton. Vale lembrar que esses métodos numéricos são estudados na disciplina Cálculo Numérico.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}