• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função derivável no ponto

Função derivável no ponto

Mensagempor Lilica » Qua Jun 29, 2011 16:02

Dê um exemplo de uma função f:R-R que é derivável em todos os pontos, exceto em x = 0 e x = 1.
Minha dúvida é a seguinte, encontrei uma função que não é derivável em 1 e 0, mas como posso provar que a mesma será derivável para todos os outros pontos?
Lilica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jun 29, 2011 15:38
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função derivável no ponto

Mensagempor LuizAquino » Qua Jun 29, 2011 16:32

Qual foi a função que você encontrou?

A ideia nesses exercícios é começar com uma função que sabemos ser derivável em todos os seus pontos. Em seguida, manipulamos essa função de modo a ela ficar não diferenciável nos pontos desejados.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função derivável no ponto

Mensagempor Lilica » Qua Jun 29, 2011 16:47

Eu pensei nesta função:

f (x);
x+1 x<0
2x 0?x<1
x+2 se x?1

Conclui através das derivadas laterais que a mesma não é derivável em 1 nem em 0, mas não me garante que seja derivável em todos os outros pontos. Qual seria a sua idéia?
Lilica
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jun 29, 2011 15:38
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função derivável no ponto

Mensagempor LuizAquino » Qua Jun 29, 2011 17:04

Note que a sua função é formada por três pedaços, cada um sendo uma porção de reta. Ora, uma função do tipo h(x) = ax+b (a e b constantes reais) é derivável em todos os pontos de seu domínio! (Se você quiser, facilmente pode demonstrar isso.)

Por exemplo, a função h(x) = x + 1 é derivável em todos os pontos de seu domínio (que seria o conjunto dos números reais). É claro que (-\infty,\,0) é um subconjunto do domínio de h, portanto ela é derivável nele. Em resumo, h é derivável para x < 0.

Observação
Para provar que a sua função é diferenciável em todos os seus pontos, exceto em 0 e 1, você terá que provar que o limite \lim_{x\to a} \frac{f(x)-f(a)}{x-a} existe para três casos distintos:
(i) a < 0
(ii) 0 < a < 1
(iii) a > 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}