• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais Múltiplas

Integrais Múltiplas

Mensagempor EulaCarrara » Dom Jun 26, 2011 21:09

Um objeto tem forma esférica com raio de 10cm. Sua massa é desigualmente distribuída pelo volume, sendo que a densidade é máxima igual a 5g/cm³ no centro e decai proporcionalmente à distância do centro, chegando a zero na superfície. Encontre a massa do objeto.

:?:
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando

Re: Integrais Múltiplas

Mensagempor MarceloFantini » Dom Jun 26, 2011 21:49

Não tenho muito domínio sobre o assunto, então não posso afirmar com certeza sobre a resposta. Primeiro, sabemos que a massa será dada por:

M = \iiint \delta(x,y,z) \; dV

Como o objeto é esférico, isso me sugere utilizar coordenadas esféricas. Não sabemos a densidade, mas pelos dados do enunciado eu pensaria em algo da seguinte forma:

\delta(r, \theta, \phi) = 5(1-r)

Quando a distância ao centro é zero a densidade é 5 e na superfície a densidade é zero. Note que não depende dos ângulos. Portanto, acredito que fique assim:

\int\limits_0^{\pi} \int\limits_0^{2 \pi} \int\limits_0^{10} 5(1-r) r^2 \, sen \phi \; dr \, d\theta \, d\phi

Agora o problema é basicamente resolver esta integral tripla. Quero lembrar que não tenho certeza do raciocínio, mas eu pensaria assim.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais Múltiplas

Mensagempor LuizAquino » Seg Jun 27, 2011 11:14

Prezados,

Seja \rho(x,\,y,\,z) a densidade de massa no ponto (x,\,y,\,z) .

Suponha que a esfera está centrada na origem do sistema.

Queremos que:
(i) \rho(0,\,0,\,0) = 5 ;
(ii) \rho(x_1,\,y_1,\,z_1) = 0, com (x_1,\,y_1,\,z_1) um ponto sobre a esfera;
(iii) \rho decai proporcionalmente à distância do centro.

Para simplificar, considere que d é a distância do ponto (x,\,y,\,z) ao centro da esfera. Podemos reescrever (i), (ii) e (iii) como:

(i*) d = 0 \Rightarrow \rho = 5 ;
(ii*) d = 10 \Rightarrow \rho = 0 ;
(iii*) \rho = kd + m , com k e m constantes reais.

Disso, obtemos: \rho = -\frac{1}{2}d + 5 .

Mas, isso é o mesmo que: \rho(x,\,y,\,z) = -\frac{1}{2}\sqrt{x^2 + y^2 + z^2} + 5 .

Sendo assim, lembrando-se da simetria da esfera, podemos calcular a sua massa por:
m = 8\int_0^{10} \int_0^{10} \int_0^{10} -\frac{1}{2}\sqrt{x^2 + y^2 + z^2} + 5 \,dx\,dy\,dz

Em coordenadas esféricas, essa integral pode ser reescrita como:
m = 8\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^{10} \left(-\frac{1}{2}r + 5\right) r^2\,\textrm{sen}\,\phi\,dr\,d\theta\,d\phi
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integrais Múltiplas

Mensagempor MarceloFantini » Seg Jun 27, 2011 11:23

Bom, esqueci do \frac{1}{2} mas a resposta é a mesma do Luiz Aquino. O número 8 está ali apenas para deixar os limites de integração mais bonitinhos, haha.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Integrais Múltiplas

Mensagempor LuizAquino » Seg Jun 27, 2011 11:54

MarceloFantini escreveu:Bom, esqueci do \frac{1}{2} mas a resposta é a mesma do Luiz Aquino.

Pois é. Bastava ter escrito algo como \delta(r,\, \theta,\, \phi) = \frac{1}{2}(10 - r) ao invés de \delta(r,\, \theta,\, \phi) = 5(1-r) .

MarceloFantini escreveu:O número 8 está ali apenas para deixar os limites de integração mais bonitinhos, haha.

:)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Integrais Múltiplas

Mensagempor EulaCarrara » Seg Jun 27, 2011 23:24

Muito Obrigada!! :-D
EulaCarrara
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Abr 19, 2010 21:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 81 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D