• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de 'Prove que...' guidorizzi.

Exercicio de 'Prove que...' guidorizzi.

Mensagempor TheoFerraz » Ter Mai 24, 2011 18:22

A questão é a seguinte:

Sejam f e g duas funçoes deriváveis em (a,b) tais que f '(x) < g '(x) para todo x em (a,b). Suponha que exista c em (a,b) tal que f(c)=g(c). Prove que f(x) < g(x) para x > c, e f(x) > g(x) para x < c.

O exercicio está na parte de intervalos de crescimento e descrescimento, concavidades, pontos de inflexão, maximos e mínimos, Teorema do val. medio, essas coisas, do guidorizzi.


Obrigado.
Atenciosamente, Theo ferraz
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Exercicio de 'Prove que...' guidorizzi.

Mensagempor LuizAquino » Ter Mai 24, 2011 20:47

Observação
Por uma das hipóteses do exercício temos que f e g são diferenciáveis em (a, b), o que significa que f e g são contínuas em (a, b).

Precisamos ainda considerar que f e g são contínuas em x = a e x = b, para que desse modo f e g sejam contínuas em [a, b].

Isso será necessário para podermos usar o Teorema do Valor Médio.

Dica
Divida o intervalo [a, b] em dois intervalos: [a, c] e [c, b].

Aplique o T. V. M. em ambos os intervalos e use a hipótese que f'(x) < g'(x) para todo x em (a, b).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 37 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}