por TheoFerraz » Ter Mai 24, 2011 18:22
A questão é a seguinte:
Sejam f e g duas funçoes deriváveis em (a,b) tais que f '(x) < g '(x) para todo x em (a,b). Suponha que exista c em (a,b) tal que f(c)=g(c). Prove que f(x) < g(x) para x > c, e f(x) > g(x) para x < c.
O exercicio está na parte de intervalos de crescimento e descrescimento, concavidades, pontos de inflexão, maximos e mínimos, Teorema do val. medio, essas coisas, do guidorizzi.
Obrigado.
Atenciosamente, Theo ferraz
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por LuizAquino » Ter Mai 24, 2011 20:47
ObservaçãoPor uma das hipóteses do exercício temos que f e g são diferenciáveis em (a, b), o que significa que f e g são contínuas em (a, b).
Precisamos ainda considerar que f e g são contínuas em x = a e x = b, para que desse modo f e g sejam contínuas em [a, b].
Isso será necessário para podermos usar o
Teorema do Valor Médio.
DicaDivida o intervalo [a, b] em dois intervalos: [a, c] e [c, b].
Aplique o T. V. M. em ambos os intervalos e use a hipótese que f'(x) < g'(x) para todo x em (a, b).
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exercício de derivadas - Guidorizzi
por -civil- » Qui Mai 19, 2011 10:26
- 2 Respostas
- 3905 Exibições
- Última mensagem por -civil-

Seg Mai 23, 2011 00:24
Cálculo: Limites, Derivadas e Integrais
-
- Guidorizzi - Cap 1 - Ex 17
por kryzay » Qua Jul 27, 2011 09:20
- 8 Respostas
- 7631 Exibições
- Última mensagem por Buda

Sáb Out 29, 2011 23:04
Funções
-
- Guidorizzi
por manuoliveira » Qua Set 12, 2012 21:09
- 1 Respostas
- 5718 Exibições
- Última mensagem por MarceloFantini

Qua Set 12, 2012 22:04
Cálculo
-
- Diferenciabilidade [Guidorizzi]
por PScotth » Sáb Jun 23, 2018 09:57
- 0 Respostas
- 2593 Exibições
- Última mensagem por PScotth

Sáb Jun 23, 2018 09:57
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Cálculo de Áreas - Guidorizzi
por Lennon » Sáb Jun 08, 2013 02:24
- 2 Respostas
- 2703 Exibições
- Última mensagem por Lennon

Dom Jun 09, 2013 22:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.