• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxa de variação

Taxa de variação

Mensagempor AlbertoAM » Sáb Mai 21, 2011 14:23

Duas estradas retas se cruzam perpendicularmente em um entroncamento T.Em uma das estradas o carro A trafega a 80km/h em direção a T e, na outra estrada, o carro B também trafega em direção a T a 60km/h, de modo que, no instante t=0, o carro A se encontra a 36km de T e o carro B a 202km de T.Pede-se
Determinar, após exatamente 27 minutos, a taxa de variação da distancia entre os carros e decidir se os mesmo estão se afastando ou aproximando um do outro.R.:-60km/h, ou os carros se aproximam a 60km/h.

Eu queria saber se na hora de montarmos a nossa hipótese seria desse jeito:
\left(\frac{da}{dt} \right)=-80km/h e \left(\frac{db}{dt} \right)=-60km/h

O sinal de menos seria porque os dois carros se aproxima de T, desse modo a distancia deles em relação a T iria diminuir, ou seja, temos uma função decrescente.Correto?
Com isso eu cheguei nessa resposta:
\left(\frac{dc}{dt} \right)=-60km/h para t=0,45h, sendo c a hipotenusa do triangulo retangulo formado.

Só que no enunciado ele fala para decidir se os mesmo estão se afastando ou aproximando um do outro, como a nossa resposta deu -60km/h, não quer dizer que eles estão se aproximando, pois a distancia entre eles diminui.Mas na resposta diz o contrário do meu raciocínio.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Taxa de variação

Mensagempor LuizAquino » Dom Mai 22, 2011 13:03

Abaixo há uma ilustração do exercício.
carros-A-B.png
carros-A-B.png (5.36 KiB) Exibido 2593 vezes


O exercício primeiro pede que seja calculado d'(27/60), que será igual a -60.

Agora, pense um pouco.

Quando t = (26/60) horas, qual é a distância entre os carros? E quando t = (27/60) horas, qual é a distância? Durante esses tempos, a distância aumentou ou diminuiu?
lcmaquino.org | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2652
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}