• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivação

Derivação

Mensagempor Michelee » Seg Mai 16, 2011 15:24

Como derivar 1 + x + x² + x³ / 1- x +x² - x³ =

Eu não consegui derivar essa divisão.
Quem souber resolver, eu agradeço :)
Michelee
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Abr 26, 2011 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivação

Mensagempor LuizAquino » Seg Mai 16, 2011 19:29

Por favor, tenha mais cuidado ao digitar as notações matemáticas!

Note que o texto "1 + x + x² + x³ / 1- x +x² - x³" é o mesmo que:
1 + x + x^2 + \frac{x^3}{1} - x +x^2 - x^3

Ao que parece, você quer a seguinte expressão:
\frac{1 + x + x^2 + x^3}{1 - x +x^2 - x^3}

Nesse caso, você deveria ter escrito algo como: "(1 + x + x² + x³)/(1- x +x² - x³)". Note que o uso dos delimitadores de forma adequada é fundamental!

Agora, organizando mais um pouco, você quer derivar a função:
f(x) = \frac{1 + x + x^2 + x^3}{1 - x +x^2 - x^3}

Para isso, basta aplicar a regra do quociente:
f^\prime(x) = \frac{(1 + x + x^2 + x^3)^\prime(1 - x +x^2 - x^3) - (1 + x + x^2 + x^3)(1 - x +x^2 - x^3)^\prime}{(1 - x +x^2 - x^3)^2}

f^\prime(x) = \frac{(1 + 2x + 3x^2)(1 - x +x^2 - x^3) - (1 + x + x^2 + x^3)(-1+2x - 3x^2)}{(1 - x +x^2 - x^3)^2}

f^\prime(x) = \frac{2x^4 + 4x^2 + 2}{(1 - x +x^2 - x^3)^2}

f^\prime(x) = \frac{2(x^2 + 1)^2}{[-(x-1)(x^2+1)]^2}

f^\prime(x) = \frac{2}{(x-1)^2}
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron