• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar utilizando a de função ?

Derivar utilizando a de função ?

Mensagempor Charlys Couto » Sex Abr 29, 2011 12:19

Derivar utilizando a de Função ?
Gente eu tenho 2 perguntas para fazer...

1º Onde a gente vai usar a dericada na pratica ?

2º derivar essas funções :
y = x

f(x) = x ao quadrado

f(x) = -x + 1


Ai minha professora pois no quadro como que deve ficar :

f^\prime(x)\ =         \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}

Ai logo depois ela pois um grafico marcando no eixo x a seguinte fração: x . x + DELTA X

Obrigado gente !
Charlys Couto
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 29, 2011 12:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Agronomica
Andamento: cursando

Re: Derivar utilizando a de função ?

Mensagempor Charlys Couto » Sex Abr 29, 2011 13:21

Eu tentei aqui em casa e deu o seguinte :

Na 1º questão deu 1
na 2º deu 2x
e na 3º deu -1

ta correto ?
Charlys Couto
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 29, 2011 12:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Agronomica
Andamento: cursando

Re: Derivar utilizando a de função ?

Mensagempor MarceloFantini » Sex Abr 29, 2011 13:26

Sim, estão corretas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivar utilizando a de função ?

Mensagempor Charlys Couto » Sex Abr 29, 2011 13:28

Obrigado...
Charlys Couto
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 29, 2011 12:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Agronomica
Andamento: cursando

Re: Derivar utilizando a de função ?

Mensagempor LuizAquino » Sex Abr 29, 2011 18:10

Olá Charlys Couto,

Eu acredito que os tópicos abaixo possam lhe interessar.

Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818

Curso de Cálculo I no YouTube
viewtopic.php?f=137&t=4280
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivar utilizando a de função ?

Mensagempor Yokotoyota » Qui Fev 04, 2016 04:46

Используется, чтобы танцевать с жизнью очень хорошо.
Yokotoyota
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Fev 03, 2016 09:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.