por genicleide » Qua Abr 20, 2011 14:28
Não estou conseguindo derivar:
![f(x)=\frac{2x}{\sqrt[2]{3x-1}} f(x)=\frac{2x}{\sqrt[2]{3x-1}}](/latexrender/pictures/8827474e2ce86af38df41d6a94a36ec0.png)
Alguém poderia me ajudar, estou tentando pela regra do quociente mas não tá dando certo.
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
por LuizAquino » Qua Abr 20, 2011 15:34
Após aplicar a regra do quociente, será necessário aplicar a regra da cadeia para derivar o termo

:

Use essa informação para terminar o exercício. Se não conseguir terminar, envie a sua resolução para identificarmos os problemas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por genicleide » Qua Abr 20, 2011 17:17
Bom eu resolvi até certo ponto mas n sei se estou correta. Esta é a minha resolução:
![f(x)= \frac{2x}{\sqrt[]{3x-1}}
\rightarrow
f(x)= \frac{2x}{{(3x-1)}^{1/2}}\rightarrow
f'(x)=\frac{2(3x-1)^{1/2}-3x(3x-1)^{-1/2}}{({3x-1}^{1/2})^{2}}\rightarrow f(x)= \frac{2x}{\sqrt[]{3x-1}}
\rightarrow
f(x)= \frac{2x}{{(3x-1)}^{1/2}}\rightarrow
f'(x)=\frac{2(3x-1)^{1/2}-3x(3x-1)^{-1/2}}{({3x-1}^{1/2})^{2}}\rightarrow](/latexrender/pictures/e6d49b3594b07f2fdf5735b99ba46033.png)
Apartir daki não consigo desenvolver.
Se puder me ajudar
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
por LuizAquino » Qua Abr 20, 2011 17:42
Temos a função
![f(x)= \frac{2x}{\sqrt[]{3x-1}} f(x)= \frac{2x}{\sqrt[]{3x-1}}](/latexrender/pictures/7db572b1ce80bcd4e3cc063a255d7572.png)
. A sua derivada será:

Como o domínio da função é

, temos que

. Desse modo, teremos que:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por genicleide » Qua Abr 20, 2011 19:44
Muito obrigada!
-
genicleide
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Abr 20, 2011 11:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Quimica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [DERIVADAS] Regra da Cadeia
por pauloguerche » Qua Set 07, 2011 17:19
- 4 Respostas
- 3777 Exibições
- Última mensagem por LuizAquino

Qui Set 08, 2011 10:50
Cálculo: Limites, Derivadas e Integrais
-
- [derivadas] regra da cadeia
por emsbp » Sex Mar 16, 2012 08:45
- 2 Respostas
- 2128 Exibições
- Última mensagem por emsbp

Sex Mar 16, 2012 18:38
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Regra Da Cadeia
por guigoraphael » Qua Ago 07, 2013 21:17
- 0 Respostas
- 1063 Exibições
- Última mensagem por guigoraphael

Qua Ago 07, 2013 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Regra da cadeia para derivadas parciais
por Maisa_Rany » Qua Nov 07, 2018 16:47
- 2 Respostas
- 9232 Exibições
- Última mensagem por Maisa_Rany

Qui Nov 08, 2018 16:33
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2] Regra da cadeia em derivadas parciais
por NavegantePI » Sáb Jun 25, 2016 18:05
- 0 Respostas
- 1905 Exibições
- Última mensagem por NavegantePI

Sáb Jun 25, 2016 18:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.