• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites, help aqui

Limites, help aqui

Mensagempor Maykids » Dom Mar 20, 2011 13:00

E ai pessoal tudo bom?! entao sou novo aqui no forum e to querendo ficar fera em limites, pq essa faculdade ta me matando com isso de calculo, ahuahhua,
então eu estou fazendo uns exercicios so que sempre da erro -.-, sera que voces poderiam me dar uma luz?!
postarei os primeiros exercicios aqui, e gostaria que voces me indicacem o erro para que eu possa corrigir-los, ;/

\lim_{\ x \to0}\frac{\sqrt{1-2x-x^2}-(x+1)} {\ x }
Nesse exercicio eu estou fazendo o conjugado, pela equação de cima, e estou caindo aqui:

(Desculpa nao colocar o passo a passo eh que ainda sou leigo quanto ao programa)
\lim_{\ x \to0}\frac{\ -2x^2-4x } {\ x (\sqrt{1-2x-x^2}+(x+1))}

entao pessoal dai pra frente eu nao sei o que fazer, pois o resultado esta dando -2.

outro exercicio, esse eu nao tenho ideia de como começar,:
\lim_{\ x \to1}\frac{3(1-x^2)-2(1-x^3)} {\ (1-x^3)(1-x^2) }

Desde ja agradeço a todos
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Limites, help aqui

Mensagempor MarceloFantini » Dom Mar 20, 2011 14:15

No primeiro, coloque -2x em evidência no numerador e veja o que acontece. Não tentei o segundo, mas procure usar que a^3-b^3 = (a-b)(a^2 +ab +b^2) e a^2 -b^2=(a-b)(a+b).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limites, help aqui

Mensagempor Maykids » Dom Mar 20, 2011 16:29

ok vou tentar aqui amigo, desde ja agradeço.
Maykids
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Dom Mar 20, 2011 12:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de computação
Andamento: cursando

Re: Limites, help aqui

Mensagempor LuizAquino » Dom Mar 20, 2011 17:10

Eu recomendo que você dê uma olhada no tópico abaixo. Eu tenho certeza que ele lhe ajudará muito ao longo do curso de Cálculo.
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}