• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calculo

calculo

Mensagempor vinicius reis » Sex Mar 18, 2011 16:01

o perimetro de um triangulo de lados inteiros e igual a 12m.o maior valor possivel para um dos lados deste triagulo tem medida igual a???
vinicius reis
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mar 12, 2011 13:49
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso tecnico
Andamento: cursando

Re: calculo

Mensagempor Renato_RJ » Sex Mar 18, 2011 16:58

Vamos chamar os lados do nosso triângulo de a,b,c e tenhamos a > b > c, logo o seu perímetro será 2p = a + b + c.

Partindo da definição, sabemos que, para a existência de um triângulo, cada lado deve ser maior que a diferença mas menor do que a soma dos outros lados, isto é:

b - c \, \textless \, a \, \textless \, b + c

Refazendo a equação do perímetro, teremos:

2p - a = b + c

Assim teremos:

a \, \textless \, 2p - a \Rightarrow \, 2a \, \textless \, 12 \Rightarrow \, a \, \textless \, 6

Logo, o maior valor possível para a será 5, pois estamos no domínio dos inteiros.

Espero ter ajudado..
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}