• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como poderia resolver por limites?

como poderia resolver por limites?

Mensagempor ronaldy » Seg Set 08, 2008 16:22

O n° Pi pode ser definido como sendo o limite quando n tende ao infinito da área de um polígono regular de 2 ( elevado a n) lados inscrito em uma circulo de raio 1.Mostrar que a seqüência desses áreas tomando n = 2,3,4..... é monótona, crescente e limitada e use-a para determinar o valor de Pi, aproximadamente. Por favor, me ajudem a responder!
Meu email: giapeto10@yahoo.com.br
desde já gradeço
ronaldy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Set 08, 2008 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: como poderia resolver por limites?

Mensagempor fabiosousa » Ter Set 09, 2008 17:41

Olá ronaldy, boas-vindas!

Primeiro, revise como obter a área de um polígono regular de N lados (N em letra maiúscula para não confundir com o n do enunciado, pois N=2^n).

Você verá que será necessário considerar o apótema que é a distância perpendicular de um dos lados do polígono até o seu centro.

Para visualizar, divida alguns polígonos regulares em triângulos isósceles e, por Pitágoras, escreva a medida do lado em função do apótema.

Depois, na expressão da área (que deverá estar em função do apótema e do número de lados N), reescreva o apótema somente em função de N (já que a circunferência possui raio unitário).

Assim, com a expressão da área para os polígonoes regulares, somente em função de N, você poderá representar alguns elementos da seqüência e prosseguir com sua análise.

Por favor, colabore com as regras para participação no fórum.


Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: como poderia resolver por limites?

Mensagempor ronaldy » Ter Set 09, 2008 21:44

Fabio sousa Nem sei como agradeçer! foi uma força e tanto!
As vezes são pequenos detalhes que não estamos acostumados a raciocinar talvez por muitas vezes ter uma visão muito estreita dos problemas! Agradeço! E se tiver algo que possa ajudar estou aqui.
O que seria bom?
divulgar o site?
tem algum fundo para ajudar o site?
abraço!
ronaldy
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Set 08, 2008 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: como poderia resolver por limites?

Mensagempor fabiosousa » Ter Set 09, 2008 21:57

Olá ronaldy, boa noite!
Fico feliz por ter ajudado.

Por enquanto ainda não compartilhamos as despesas. :-D
Agradecemos qualquer divulgação, embora, você deve ter percebido, o objetivo aqui não seja resolver exercícios, mas, compartilhar idéias favorecendo o estudo.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
fabiosousa
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 881
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.